Détail de l'auteur
Auteur Saygin Abdikan |
Documents disponibles écrits par cet auteur



Exploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area / Saygin Abdikan in Geocarto international, vol 33 n° 1 (January 2018)
![]()
[article]
Titre : Exploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area Type de document : Article/Communication Auteurs : Saygin Abdikan, Auteur Année de publication : 2018 Article en page(s) : pp 21 - 37 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] qualité des données
[Termes descripteurs IGN] transformation en ondelettesRésumé : (Auteur) Remote sensing data utilize valuable information via various satellite sensors that have different specifications. Image fusion allows the user to combine different spatial and spectral resolutions to improve the information for purposes such as forest monitoring and land cover mapping. In this study, I assessed the contribution of dual-polarized Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar data to multispectral Landsat imagery. The research investigated the separability of forested areas using different image fusion techniques. Quality analysis of the fused images was conducted using qualitative and quantitative analyses. I applied the support vector machine image classification method for land cover mapping. Among all methods examined, the à trous wavelet transform method best differentiated the forested area with an overall accuracy (OA) of 94.316%, while Landsat had an OA of 92.626%. The findings of this study indicated that optical-SAR-fused images improve land cover classification, which results in higher quality forest inventory data and mapping. Numéro de notice : A2018-030 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1222635 En ligne : https://doi.org/10.1080/10106049.2016.1222635 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89199
in Geocarto international > vol 33 n° 1 (January 2018) . - pp 21 - 37[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018011 SL Revue Centre de documentation Revues en salle Disponible