Détail de l'auteur
Auteur Tawanda W. Gara |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits / Tawanda W. Gara in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits Type de document : Article/Communication Auteurs : Tawanda W. Gara, Auteur ; Roshanak Darvishzadeh, Auteur ; Andrew K. Skidmore, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 108 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bavière (Allemagne)
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] écosystème forestier
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice foliaire
[Termes IGN] Leaf Mass per Area
[Termes IGN] photosynthèse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Leaf traits at canopy level (hereinafter canopy traits) are conventionally expressed as a product of total canopy leaf area index (LAI) and leaf trait content based on samples collected from the exposed upper canopy. This traditional expression is centered on the theory that absorption of incident photosynthetically active radiation (PAR) follow a bell-shaped function skewed to the upper canopy. However, the validity of this theory has remained untested for a suite of canopy traits in a temperate forest ecosystem across multiple seasons using multispectral imagery. In this study, we examined the effect of canopy traits expression in modelling canopy traits using Sentinel-2 multispectral data across the growing season in Bavaria Forest National Park (BFNP), Germany. To achieve this, we measured leaf mass per area (LMA), chlorophyll (Cab), nitrogen (N) and carbon content and LAI from the exposed upper and shaded lower canopy respectively over three seasons (spring, summer and autumn). Subsequently, we estimated canopy traits using two expressions, i.e. the traditional expression-based on the product of LAI and leaf traits content of samples collected from the sunlit upper canopy (hereinafter top-of-canopy expression) and the weighted expression - established on the proportion between the shaded lower and sunlit upper canopy LAI and their respective leaf traits content. Using a Random Forest machine-learning algorithm, we separately modelled canopy traits estimated from the two expressions using Sentinel-2 spectral bands and vegetation indices. Our results showed that dry matter related canopy traits (LMA, N and carbon) estimated based on the weighted canopy expression yield stronger correlations and higher prediction accuracy (NRMSECV 0.48 µg/cm2) across all seasons. We also developed a generalized model that explained 52.57–67.82% variation in canopy traits across the three seasons. Using the most accurate Random Forest model for each season, we demonstrated the capability of Sentinel-2 data to map seasonal dynamics of canopy traits across the park. Results presented in this study revealed that canopy trait expression can have a profound effect on modelling the accuracy of canopy traits using satellite imagery throughout the growing seasons. These findings have implications on model accuracy when monitoring the dynamics of ecosystem functions, processes and services. Numéro de notice : A2019-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.005 Date de publication en ligne : 11/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93725
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 108 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimating forest standing biomass in savanna woodlands as an indicator of forest productivity using the new generation WorldView-2 sensor / Timothy Dube in Geocarto international, vol 33 n° 2 (February 2018)
[article]
Titre : Estimating forest standing biomass in savanna woodlands as an indicator of forest productivity using the new generation WorldView-2 sensor Type de document : Article/Communication Auteurs : Timothy Dube, Auteur ; Tawanda W. Gara, Auteur ; Onisimo Mutanga, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 178 - 188 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] données dendrométriques
[Termes IGN] forêt sèche
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] productivité biologique
[Termes IGN] savaneRésumé : (Auteur) Accurate and up-to-date information on forest dendrometric traits, such as above ground biomass is important in understanding the contribution of terrestrial ecosystems to the regulation of atmsopheric carbon, especially in the face of global environmental change. Besides, dendrometric traits information is critical in assessing the healthy and the spatial planning of fragile ecosystems, such as the savanna dry forests. The aim of this work was to test whether red-edge spectral data derived from WorldView-2 multispectral imagery improve biomass estimation in savanna dry forests. The results of this study have shown that biomass estimation using all Worldview-2 raw spectral bands without the red-edge band yielded low estimation accuracies (R2 of 0.67 and a RMSE-CV of 2.2 t ha−1) when compared to when the red-edge band was included as a co-variate (R2 of 0.73 and a RMSE-CV of 2.04 t ha−1). Also, similar results were obseved when all WorldView-2 vegetation indices (without the red-edge computed ones), producing slightly low accuracies (R2 of about 0.67 and a RMSE-CV of 2.20 t ha−1), when compared to those obtained using all indices and RE-computed indices(R2 of 0.76 and a RMSE-CV of 1.88 t ha−1). Overall, the findings of this work have demontrated the potential and importance of strategically positioned bands, such as the red-edge band in the optimal estimation of indigeonus forest biomass. These results underscores the need to shift towards embracing sensors with unique and strategeically positioned bands, such as the forthcoming Sentinel 2 MSI and HysPIRI which have a global footprint. Numéro de notice : A2018-033 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1240717 En ligne : https://doi.org/10.1080/10106049.2016.1240717 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89206
in Geocarto international > vol 33 n° 2 (February 2018) . - pp 178 - 188[article]