Détail de l'auteur
Auteur Jean-Philippe Avouac |
Documents disponibles écrits par cet auteur



A warning against over-interpretation of seasonal signals measured by the Global Navigation Satellite System / Kristel Chanard in Nature communications, vol 11 (2020)
![]()
[article]
Titre : A warning against over-interpretation of seasonal signals measured by the Global Navigation Satellite System Type de document : Article/Communication Auteurs : Kristel Chanard , Auteur ; Marianne Metois, Auteur ; Paul Rebischung
, Auteur ; Jean-Philippe Avouac, Auteur
Année de publication : 2020 Projets : TOSCA / Article en page(s) : n° 1375 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur [introduction] In a recent study, Panda et al. claim that seasonal strain across the Himalaya indicates seasonal slow slip on the Main Himalayan Thrust (MHT) fault driven by hydrological loading related to the monsoon and driving seasonal variations of seismicity. While we find the analysis interesting, we spell out some reasons why the claim should be considered with caution. [...] Numéro de notice : A2020-365 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1038/s41467-020-15100-7 date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1038/s41467-020-15100-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96831
in Nature communications > vol 11 (2020) . - n° 1375[article]Identification and extraction of seasonal geodetic signals due to surface load variations / Stacy Larochelle in Journal of geophysical research : Solid Earth, vol 123 n° 12 (December 2018)
![]()
[article]
Titre : Identification and extraction of seasonal geodetic signals due to surface load variations Type de document : Article/Communication Auteurs : Stacy Larochelle, Auteur ; Adriano Gualandi, Auteur ; Kristel Chanard , Auteur ; Jean-Philippe Avouac, Auteur
Année de publication : 2018 Projets : 3-projet - voir note / Article en page(s) : pp 11031 - 11047 Note générale : bibliographie
Funding : King Abdullah City for Science and Technology & NSF. Grant Number: EAR‐1821853Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] analyse en composantes indépendantes
[Termes descripteurs IGN] Arabie
[Termes descripteurs IGN] données géodésiques
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] modèle de déformation tectonique
[Termes descripteurs IGN] Népal
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surcharge hydrologique
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) Deformation of the Earth's surface associated with redistributions of continental water mass explains, to first order, the seasonal signals observed in geodetic position time series. Discriminating these seasonal signals from other sources of deformation in geodetic measurements is essential to isolate tectonic signals and to monitor spatio‐temporal variations in continental water storage. We propose a new methodology to identify and extract these seasonal signals. The approach uses a variational Bayesian Independent Component Analysis (vbICA) to extract the seasonal signals and a gravity‐based deformation model to identify which of these signals are caused by surface loading. We test the procedure on two study areas, the Arabian Peninsula and the Nepal Himalaya, and find that the technique successfully extracts the seasonal signals with one or two independent components, depending on whether the load is stationary or moving. The approach is robust to spatial heterogeneities inherent to geodetic measurements and can help extract systematic errors in geodetic products (e.g., draconitic errors). We also discuss how to handle the degree‐1 deformation field present in the geodetic data set but not captured by the gravity‐based model. Numéro de notice : A2018-656 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2018JB016607 date de publication en ligne : 22/11/2018 En ligne : https://doi.org/10.1029/2018JB016607 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93521
in Journal of geophysical research : Solid Earth > vol 123 n° 12 (December 2018) . - pp 11031 - 11047[article]Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series / Kristel Chanard in Journal of geophysical research : Solid Earth, vol 123 n° 4 (April 2018)
![]()
[article]
Titre : Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series Type de document : Article/Communication Auteurs : Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Eric Calais, Auteur ; Paul Rebischung
, Auteur ; Jean-Philippe Avouac, Auteur
Année de publication : 2018 Projets : 3-projet - voir note / Article en page(s) : pp 3225 - 3237 Note générale : bibliographie
The project was funded by NSF grant EAR 1345136, the Laboratoire de Recherche Commun “Yves Rocard” (ENS‐CEA‐CNRS), and CNRS/TOSCA grant 2925.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] coordonnées GNSS
[Termes descripteurs IGN] déformation horizontale de la croute terrestre
[Termes descripteurs IGN] déformation verticale de la croute terrestre
[Termes descripteurs IGN] données GRACE
[Termes descripteurs IGN] Earth Gravity Model 2008
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] harmonique sphérique
[Termes descripteurs IGN] modèle de déformation tectonique
[Termes descripteurs IGN] mouvement du géocentre
[Termes descripteurs IGN] série temporelleRésumé : (Auteur) We model surface displacements induced by variations in continental water, atmospheric pressure, and non‐tidal oceanic loading, derived from the Gravity and Recovery Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree‐1 spherical harmonic coefficients from (Swenson2008estimating). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out‐of‐phase with GNSS station position time series. We then re‐estimate the degree‐1 deformation field from a comparison between our GRACE‐derived model, with no a priori degree‐1 loads, and the GNSS observations. We show that this approach reconciles GRACE‐derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree‐1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE‐derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series. Numéro de notice : A2018-055 Affiliation des auteurs : LaSTIG LAREG+Ext (2012-mi2018) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1002/2017JB015245 date de publication en ligne : 21/02/2018 En ligne : https://doi.org/10.1002/2017JB015245 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89382
in Journal of geophysical research : Solid Earth > vol 123 n° 4 (April 2018) . - pp 3225 - 3237[article]Constraints on transient viscoelastic rheology of the asthenosphere from seasonal deformation / Kristel Chanard in Geophysical research letters, vol 45 n° 5 (15 March 2018)
![]()
[article]
Titre : Constraints on transient viscoelastic rheology of the asthenosphere from seasonal deformation Type de document : Article/Communication Auteurs : Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Eric Calais, Auteur ; Sylvain Barbot, Auteur ; Jean-Philippe Avouac, Auteur
Année de publication : 2018 Article en page(s) : pp 2328 - 2338 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes descripteurs IGN] déformation de la croute terrestre
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] données GRACE
[Termes descripteurs IGN] fonction de Green
[Termes descripteurs IGN] rhéologie
[Termes descripteurs IGN] viscositéRésumé : (auteur) We discuss the constraints on short‐term asthenospheric viscosity provided by seasonal deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used as an input to predict geodetic displacements. We compute Green's functions for surface displacements for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal loading at long wavelengths (1,300–4,000 km). By comparing predicted and observed seasonal horizontal motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 1017 Pa.s, suggesting that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold for the seasonal deformation global average. Numéro de notice : A2018-654 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1002/2017GL076451 date de publication en ligne : 12/02/2018 En ligne : https://doi.org/10.1002/2017GL076451 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93514
in Geophysical research letters > vol 45 n° 5 (15 March 2018) . - pp 2328 - 2338[article]Investigating tropospheric effects and seasonal position variations in GPS and DORIS time-series from the Nepal Himalaya / Mireille Flouzat in Geophysical journal international, vol 178 n° 3 (September 2009)
![]()
[article]
Titre : Investigating tropospheric effects and seasonal position variations in GPS and DORIS time-series from the Nepal Himalaya Type de document : Article/Communication Auteurs : Mireille Flouzat, Auteur ; Pierre Bettinelli, Auteur ; Pascal Willis , Auteur ; Jean-Philippe Avouac, Auteur ; Thierry Héritier, Auteur ; Umesh Gautam, Auteur
Année de publication : 2009 Projets : 1-Pas de projet / Article en page(s) : pp 1246 - 1259 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes descripteurs IGN] données DORIS
[Termes descripteurs IGN] données GPS
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] propagation troposphérique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) Geodetic time-series from continuous GPS (cGPS) and 1 DORIS stations across the Himalaya of central Nepal show strong seasonal fluctuations observed on the horizontal and vertical components. Because the fluctuations determined at the different stations have similar phase but different amplitudes, these observations would imply that the secular shortening across the range is modulated by a seasonal strain. Given the geographic and climatic setting, there is however a possibility that the GPS positions be biased by tropospheric effects. We process these data using two different software packages and two different analysis strategies. Our analysis shows evidence for 1-strong seasonal fluctuation of zenithal delays consistent with in situ meteorological data and two strong horizontal tropospheric gradients in particular in the EW direction, that is, parallel to the mountain front at Gumba, also detected in DORIS results. We show that the tropospheric effects cannot however be the source of the observed seasonality of horizontal strain. This study supports the view that the seasonal strain in the Himalaya is real and probably driven by seasonal surface load variations. Our study adds support to the view that seasonal variations of seismicity in the Himalaya reflects seasonal variations of geodetic strain. Numéro de notice : A2009-604 Affiliation des auteurs : LAREG+Ext (1991-2011) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/j.1365-246X.2009.04252.x En ligne : https://doi.org/10.1111/j.1365-246X.2009.04252.x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95755
in Geophysical journal international > vol 178 n° 3 (September 2009) . - pp 1246 - 1259[article]