Détail de l'auteur
Auteur Yifang Shi |
Documents disponibles écrits par cet auteur



Important LiDAR metrics for discriminating forest tree species in Central Europe / Yifang Shi in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)
![]()
[article]
Titre : Important LiDAR metrics for discriminating forest tree species in Central Europe Type de document : Article/Communication Auteurs : Yifang Shi, Auteur ; Tiejun Wang, Auteur ; Andrew K. Skidmore, Auteur ; Marco Heurich, Auteur Année de publication : 2018 Article en page(s) : pp 163 - 174 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] Allemagne
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Europe centrale
[Termes descripteurs IGN] forêt tempérée
[Termes descripteurs IGN] morphologie mathématiqueRésumé : (Auteur) Numerous airborne LiDAR-derived metrics have been proposed for classifying tree species. Yet an in-depth ecological and biological understanding of the significance of these metrics for tree species mapping remains largely unexplored. In this paper, we evaluated the performance of 37 frequently used LiDAR metrics derived under leaf-on and leaf-off conditions, respectively, for discriminating six different tree species in a natural forest in Germany. We firstly assessed the correlation between these metrics. Then we applied a Random Forest algorithm to classify the tree species and evaluated the importance of the LiDAR metrics. Finally, we identified the most important LiDAR metrics and tested their robustness and transferability. Our results indicated that about 60% of LiDAR metrics were highly correlated to each other (|r| > 0.7). There was no statistically significant difference in tree species mapping accuracy between the use of leaf-on and leaf-off LiDAR metrics. However, combining leaf-on and leaf-off LiDAR metrics significantly increased the overall accuracy from 58.2% (leaf-on) and 62.0% (leaf-off) to 66.5% as well as the kappa coefficient from 0.47 (leaf-on) and 0.51 (leaf-off) to 0.58. Radiometric features, especially intensity related metrics, provided more consistent and significant contributions than geometric features for tree species discrimination. Specifically, the mean intensity of first-or-single returns as well as the mean value of echo width were identified as the most robust LiDAR metrics for tree species discrimination. These results indicate that metrics derived from airborne LiDAR data, especially radiometric metrics, can aid in discriminating tree species in a mixed temperate forest, and represent candidate metrics for tree species classification and monitoring in Central Europe. Numéro de notice : A2018-080 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.02.002 date de publication en ligne : 07/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.02.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89442
in ISPRS Journal of photogrammetry and remote sensing > vol 137 (March 2018) . - pp 163 - 174[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018031 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018033 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2018032 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Large off-nadir scan angle of airborne LiDAR can severely affect the estimates of forest structure metrics / Jing Liu in ISPRS Journal of photogrammetry and remote sensing, vol 136 (February 2018)
![]()
[article]
Titre : Large off-nadir scan angle of airborne LiDAR can severely affect the estimates of forest structure metrics Type de document : Article/Communication Auteurs : Jing Liu, Auteur ; Andrew K. Skidmore, Auteur ; Simon D. Jones, Auteur ; Tiejun Wang, Auteur ; Marco Heurich, Auteur ; Xi Zhu, Auteur ; Yifang Shi, Auteur Année de publication : 2018 Article en page(s) : pp 13 - 25 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] angle de visée
[Termes descripteurs IGN] Bavière (Allemagne)
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] instrument aéroporté
[Termes descripteurs IGN] parc naturel régional
[Termes descripteurs IGN] placette d'échantillonnage
[Termes descripteurs IGN] structure d'un peuplement forestierRésumé : (Auteur) Gap fraction (Pgap) and vertical gap fraction profile (vertical Pgap profile) are important forest structural metrics. Accurate estimation of Pgap and vertical Pgap profile is therefore critical for many ecological applications, including leaf area index (LAI) mapping, LAI profile estimation and wildlife habitat modelling. Although many studies estimated Pgap and vertical Pgap profile from airborne LiDAR data, the scan angle was often overlooked and a nadir view assumed. However, the scan angle can be off-nadir and highly variable in the same flight strip or across different flight strips. In this research, the impact of off-nadir scan angle on Pgap and vertical Pgap profile was evaluated, for several forest types. Airborne LiDAR data from nadir (0°∼7°), small off-nadir (7°∼23°), and large off-nadir (23°∼38°) directions were used to calculate both Pgap and vertical Pgap profile. Digital hemispherical photographs (DHP) acquired during fieldwork were used as references for validation. Our results show that angular Pgap from airborne LiDAR correlates well with angular Pgap from DHP (R2 = 0.74, 0.87, and 0.67 for nadir, small off-nadir and large off-nadir direction). But underestimation of Pgap from LiDAR amplifies at large off-nadir scan angle. By comparing Pgap and vertical Pgap profiles retrieved from different directions, it is shown that scan angle impact on Pgap and vertical Pgap profile differs amongst different forest types. The difference is likely to be caused by different leaf angle distribution and canopy architecture in these forest types. Statistical results demonstrate that the scan angle impact is more severe for plots with discontinuous or sparse canopies. These include coniferous plots, and deciduous or mixed plots with between-crown gaps. In these discontinuous plots, Pgap and vertical Pgap profiles are maximum when observed from nadir direction, and then rapidly decrease with increasing scan angle. The results of this research have many important practical implications. First, it is suggested that large off-nadir scan angle of airborne LiDAR should be avoided to ensure a more accurate Pgap and LAI estimation. Second, the angular dependence of vertical Pgap profiles observed from airborne LiDAR should be accounted for, in order to improve the retrieval of LAI profiles, and other quantitative canopy structural metrics. This is especially necessary when using multi-temporal datasets in discontinuous forest types. Third, the anisotropy of Pgap and vertical Pgap profile observed by airborne LiDAR, can potentially help to resolve the anisotropic behavior of canopy reflectance, and refine the inversion of biophysical and biochemical properties from passive multispectral or hyperspectral data Numéro de notice : A2018-072 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.12.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.12.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89432
in ISPRS Journal of photogrammetry and remote sensing > vol 136 (February 2018) . - pp 13 - 25[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018021 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018023 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2018022 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt