Détail de l'auteur
Auteur Felix Stumpf |
Documents disponibles écrits par cet auteur



Object-based classification of terrestrial laser scanning point clouds for landslide monitoring / Andreas Mayr in Photogrammetric record, vol 32 n° 160 (December 2017)
![]()
[article]
Titre : Object-based classification of terrestrial laser scanning point clouds for landslide monitoring Type de document : Article/Communication Auteurs : Andreas Mayr, Auteur ; Martin Rutzinger, Auteur ; Magnus Bremer, Auteur ; Sander J. Oude Elberink, Auteur ; Felix Stumpf, Auteur ; Clemens Geitner, Auteur Congrès : VGC 2016, 2nd virtual geoscience conference (22 - 23 septembre 2016; Bergen, Norvège), Commanditaire Année de publication : 2017 Article en page(s) : pp 377 - 397 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] compréhension de l'image
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] relation topologique 3D
[Termes descripteurs IGN] surveillance géologiqueRésumé : (auteur) Terrestrial laser scanning (TLS) is often used to monitor landslides and other gravitational mass movements with high levels of geometric detail and accuracy. However, unstructured TLS point clouds lack semantic information, which is required to geomorphologically interpret the measured changes. Extracting meaningful objects in a complex and dynamic environment is challenging due to the objects' fuzziness in reality, as well as the variability and ambiguity of their patterns in a morphometric feature space. This work presents a point‐cloud‐based approach for classifying multitemporal scenes of a hillslope affected by shallow landslides. The 3D point clouds are segmented into morphologically homogeneous and spatially connected parts. These segments are classified into seven target classes (scarp, eroded area, deposit, rock outcrop and different classes of vegetation) in a two‐step procedure: a supervised classification step with a machine‐learning classifier using morphometric features, followed by a correction step based on topological rules. This improves the final object extraction considerably. Numéro de notice : A2017-899 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12215 date de publication en ligne : 13/12/2017 En ligne : https://doi.org/10.1111/phor.12215 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89522
in Photogrammetric record > vol 32 n° 160 (December 2017) . - pp 377 - 397[article]