Détail de l'auteur
Auteur Hui Lin |
Documents disponibles écrits par cet auteur (2)



A cost-effective algorithm for calibrating multiscale geographically weighted regression models / Bo Wu in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : A cost-effective algorithm for calibrating multiscale geographically weighted regression models Type de document : Article/Communication Auteurs : Bo Wu, Auteur ; Jinbiao Yan, Auteur ; Hui Lin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 898 - 917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] grande échelle
[Termes IGN] hétérogénéité spatiale
[Termes IGN] jeu de données
[Termes IGN] modélisation spatiale
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) The multiscale geographically weighted regression (MGWR) model is a useful extension of the geographically weighted regression (GWR) model. MGWR, however, is a kind of Nadaraya–Watson kernel smoother, which usually leads to inaccurate estimates for the regression function and suffers from the boundary effect. Moreover, the widely used calibration technique for the MGWR with a back-fitting estimator (MGWR-BF) is computationally demanding, preventing it from being applied to large-scale data. To overcome these problems, we proposed a local linear-fitting-based MGWR (MGWR-LL) by introducing a local spatially varying coefficient model in which coefficients of different variables could be characterised as linear functions of spatial coordinates with different degrees of smoothness. Then the model was calibrated with a two-step least-squared estimated algorithm. Both simulated and actual data were implemented to validate the performance of the proposed method. The results consistently showed that the MGWR-LL automatically corrected for the boundary effect and improved the accuracy in most cases, not only in the goodness-of-fit measure but also in reducing the bias of the coefficient estimates. Moreover, the MGWR-LL significantly outperformed the MGWR-BF in computational cost, especially for larger-scale data. These results demonstrated that the proposed method can be a useful tool for the MGWR calibration. Numéro de notice : A2022-342 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1999457 Date de publication en ligne : 29/11/2021 En ligne : https://doi.org/10.1080/13658816.2021.1999457 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100516
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 898 - 917[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022051 SL Revue Centre de documentation Revues en salle Disponible A new scheme for urban impervious surface classification from SAR images / Hongsheng Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
![]()
[article]
Titre : A new scheme for urban impervious surface classification from SAR images Type de document : Article/Communication Auteurs : Hongsheng Zhang, Auteur ; Hui Lin, Auteur ; Yunpeng Wang, Auteur Année de publication : 2018 Article en page(s) : pp 103 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification
[Termes IGN] Hong-Kong
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] Macao
[Termes IGN] polarimétrie radar
[Termes IGN] Shenzhen
[Termes IGN] surface imperméable
[Termes IGN] zone urbaineRésumé : (Auteur) Urban impervious surfaces have been recognized as a significant indicator for various environmental and socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of the impervious surfaces with satellite technology from local to global scales. In the past decades, optical remote sensing has been widely employed for this task with various techniques. However, there are still a range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for impervious surfaces classification remains unchanged from the methods used for optical datasets. This shortcoming has prevented the community from fully exploring the potential of using SAR data for impervious surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamental Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three scenes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were employed to test and validate the proposed methodology. Experimental results indicated that the overall accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and Kappa coefficient by up to 0.18. Numéro de notice : A2018-111 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.03.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.03.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89541
in ISPRS Journal of photogrammetry and remote sensing > vol 139 (May 2018) . - pp 103 - 118[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2018051 RAB Revue Centre de documentation En réserve 3L Disponible