Détail de l'auteur
Auteur Qiuping Li |
Documents disponibles écrits par cet auteur (1)



An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data / Li Zhuo in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
![]()
[article]
Titre : An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data Type de document : Article/Communication Auteurs : Li Zhuo, Auteur ; Qingli Shi, Auteur ; Haiyan Tao, Auteur ; Jing Zheng, Auteur ; Qiuping Li, Auteur Année de publication : 2018 Article en page(s) : pp 64 - 77 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges temporels
[Termes IGN] détection de changement
[Termes IGN] Enhanced vegetation index
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] image DMSP-OLS
[Termes IGN] image Terra-MODIS
[Termes IGN] Kouangtoung (Chine)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] surface imperméableRésumé : (Auteur) Impervious surface area (ISA) is an important indicator for monitoring the intensity of human activity and ecological environment changes. Developing effective methods for estimation of ISA at different scales has thus been pursued by many scientists. The temporal mixture analysis (TMA), which is a variant of spectral mixture analysis that makes full use of the phenological information of different land cover types, is suitable for estimating the ISA fraction at a large scale. The existing TMA-based ISA fraction estimation methods rely on the assumption that pure pixels exist for all the endmembers, which, however, is not true in the case of coarse-resolution datasets. Moreover, the existing method cannot effectively differentiate bare soil from ISA effectively, which may lead to overestimation of the ISA fraction. To address these problems, we propose a new ISA estimation method based on TMA in this study, using a Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) products, the GlobeLand30 product, and the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) data. The proposed method contains four major steps. First, the MODIS NDVI time-series datasets and GlobeLand30 land cover product were used to create an NDVI temporal profile subset for the TMA model. Second, a preliminary ISA fraction map was derived on the basis of optimized endmember temporal profiles, which were generated by unmixing the selected NDVI temporal profile subset through an improved spatial-spectral preprocessing nonnegative matrix factorization algorithm (ISSPP-NMF). Then, the preliminary ISA fraction was further optimized by incorporating the EVI-adjusted night-time light index (EANTLI), which can mitigate both saturation problems and the blooming effect of the DMSP-OLS data. An effective threshold method was introduced in this step to reduce the impact of bare soil on the ISA estimation. Finally, the estimated fraction of ISA was evaluated through accuracy assessment. The proposed method was tested in two study areas, namely, Guangdong Province and the Yangtze River Delta (YRD) of China, to prove its applicability in different regions. Effectiveness of the proposed method was proven through the comparison between the proposed method with traditional TMA-based methods. The results from these analyses indicate that the proposed method outperforms the others in ISA estimation, with an overall root mean square error (RMSE) of 9.2% and a coefficient of determination (R2) of 0.8872 in Guangdong and a RMSE of 8.9% and R2 of 0.8923 in YRD. This study also proves that the ISSPP-NMF method can produce more appropriate endmembers regardless of the existence of pure pixels. The post-processing with the EANLTI procedure can effectively reduce the bare soil effect in TMA-based ISA estimation. Numéro de notice : A2018-292 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.016 Date de publication en ligne : 05/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90409
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 64 - 77[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt