Détail de l'auteur
Documents disponibles écrits par cet auteur



Titre : Application des algorithmes de Deep learning pour les images SAR Type de document : Mémoire Auteurs : Luc Baudoux , Auteur
Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2019 Importance : 73 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de fin d'étude, cycle des Ingénieurs diplômés de l’ENSG 3ème annéeLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] chatoiement
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] Perceptron multicouche
[Termes descripteurs IGN] réseau de neurones profondIndex. décimale : IGAST Mémoires de Master Information Géographique, Analyse Spatiale et Télédétection Résumé : (auteur) Les images radar sont parasitées par un phénomène physique appelé speckle leur conférant un fort effet « poivre et sel ». L’essor des techniques d’apprentissage profond ces dernières années a permis la conception de plusieurs techniques de débruitage. Celles-ci se différencient des méthodes traditionnelles par la capacité d’apprendre le modèle de débruitage implicitement depuis les données radar sans avoir recours à un modèle explicite défini par le concepteur. Le présent rapport de stage porte sur l’étude comparative des principales méthodes proposées à ce jour tant entre elles qu’avec des techniques de débruitage traditionnelles. L’objectif est ici de réaliser l’étude la plus objective possible sur les forces et faiblesses de ces méthodes. Il s’agit également
d’étudier l’influence des différents paramètres et de proposer de nouveaux réseaux de neurones afin d’améliorer les résultats actuellement disponibles. Nous montrons dans ce rapport que des réseaux de neurones simples réalisent un bon compromis entre lissage
des zones homogènes et préservations des détails. De surcroit, nous montrons que les forces et faiblesses des réseaux de neurones dépendent fortement du type d’apprentissage réalisé. Ainsi, les réseaux, traditionnellement entraînés de manière supervisée sur des simulations de speckle, tendent à mal se transposer au speckle réel. Les réseaux entraînés uniquement sur du speckle réel offrent, quant à eux, de meilleurs résultats. Il faut néanmoins faire attention à la capacité de généralisation, car ces réseaux souffrent d’une légère baisse de qualité de leurs résultats sur des zones dont les textures ou radiométries n’étaient pas présentes dans le jeu d’entraînement. La comparaison avec les méthodes traditionnelles révèle une meilleure préservation des détails au détriment d’un moins fort lissage des zones homogènes. Il convient donc de choisir entre ces méthodes en fonction de l’usage souhaité par la suite pour le traitement de la donnée radar.Note de contenu : 1- Contextualisation
2- Méthodologie
3- RésultatsNuméro de notice : 25430 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de fin d'études IT Note de thèse : Mémoire de master : Information Géographique, Analyse Spatiale et Télédétection : Paris-Est Marne la Vallée : 2019 Organisme de stage : Centre national d’études spatiales Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93899 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 25430-01 IGAST Livre Centre de documentation Travaux d'élèves Disponible Documents numériques
peut être téléchargé
Application des algorithmesAdobe Acrobat PDFConception d’une méthode radar de suivi bimensuel des déforestations et d’une méthode optique de classification d’occupation des sols / Luc Baudoux (2018)
![]()
Titre : Conception d’une méthode radar de suivi bimensuel des déforestations et d’une méthode optique de classification d’occupation des sols Type de document : Mémoire Auteurs : Luc Baudoux , Auteur
Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2018 Importance : 54 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de projet pluridisciplinaire, cycle Ingénieur 2e annéeLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] enjeu
[Termes descripteurs IGN] Guyane (département français)
[Termes descripteurs IGN] image Radarsat
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] masque
[Termes descripteurs IGN] restauration d'image
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] surveillance forestièreIndex. décimale : PROJET Rapports de projet - stage des ingénieurs de 2e année Résumé : (auteur) Dans le cadre de ses missions d’aménagement et de surveillance du territoire, la Direction de l’alimentation, de l’agriculture et de la forêt de Guyane a besoin d’un produit cartographique fiable et régulièrement actualisé. Pour répondre à ce besoin est venue l’idée d’utiliser des techniques de télédétection au sein du service afin de compléter la méthode actuelle basée sur la photo-interprétation. Dans ce contexte, mon stage a eu avec pour objectif principal de développer une méthode de suivi bimensuel des déforestations et pour objectif secondaire de proposer une technique de classification d’occupation des sols. Il fallait également former les agents du service aux concepts sous-jacents ainsi qu’à l’utilisation des scripts développés. L‘étude des déforestations vise à permettre la détection de zones déforestées supérieures à un hectare avec un retard de l’ordre des 15 jours. En raison de la nébulosité quasi permanente en Guyane, j’ai proposé l’utilisation de la technologie satellitaire radar SAR Sentinel 1 capable d’observer le sol même à travers un épais couvert nuageux. Les résultats obtenus sur une zone d’étude de 1300 km2 atteignent un taux de détection de 100% sur l’année 2017 pour les surfaces supérieures à 1 hectare. Le retard estimé de détection est, quant à lui, conforme aux 15 jours escomptés. La classification d’occupation des sols a pour objectif la réalisation d’une cartographie annuelle d’occupation des sols distinguant le cultivé du non cultivé. La solution proposée dans ce rapport repose sur une classification supervisée à partir d’imagerie satellitaire Sentinel 2. Les résultats obtenus parviennent à une première distinction entre le cultivé et le non cultivé, mais la méthode devra être améliorée afin de permettre le traitement automatisé de multiples images et d’augmenter le nombre de classes. Note de contenu : Introduction
1- Contextualisation
2- Méthodologies
3- Analyse des résultats
ConclusionNuméro de notice : 21827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Direction de l’alimentation, de l’agriculture et de la forêt de Guyane Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91319 Documents numériques
peut être téléchargé
Conception d’une méthode radar... - pdf auteurAdobe Acrobat PDF