Détail de l'auteur
Auteur Bo Li |
Documents disponibles écrits par cet auteur



Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging / Bo Li in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
![]()
[article]
Titre : Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging Type de document : Article/Communication Auteurs : Bo Li, Auteur ; Xiangming Xu, Auteur ; Li Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 161 -1 72 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] couvert végétal
[Termes descripteurs IGN] hauteur de la végétation
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] pomme de terre
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] rendement agricoleRésumé : (auteur) Rapid and accurate biomass and yield estimation facilitates efficient plant phenotyping and site-specific crop management. A low altitude unmanned aerial vehicle (UAV) was used to acquire RGB and hyperspectral imaging data for a potato crop canopy at two growth stages to estimate the above-ground biomass and predict crop yield. Field experiments included six cultivars and multiple treatments of nitrogen, potassium, and mixed compound fertilisers. Crop height was estimated using the difference between digital surface model and digital elevation models derived from RGB imagery. Combining with two narrow-band vegetation indices selected by the RReliefF feature selection algorithm. Random Forest regression models demonstrated high prediction accuracy for both fresh and dry above-ground biomass, with a coefficient of determination (r2) > 0.90. Crop yield was predicted using four narrow-band vegetation indices and crop height (r2 = 0.63) with imagery data obtained 90 days after planting. A Partial Least Squares regression model based on the full wavelength spectra demonstrated improved yield prediction (r2 = 0.81). This study demonstrated the merits of UAV-based RGB and hyperspectral imaging for estimating the above-ground biomass and yield of potato crops, which can be used to assist in site-specific crop management. Numéro de notice : A2020-125 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.013 date de publication en ligne : 28/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.013 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94750
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 161 -1 72[article]Predicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning / Qing Xu in Forest ecology and management, vol 434 (28 February 2019)
![]()
[article]
Titre : Predicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning Type de document : Article/Communication Auteurs : Qing Xu, Auteur ; Bo Li, Auteur ; Matti Maltamo, Auteur ; Timo Tokola, Auteur ; Zhengyang Hou, Auteur Année de publication : 2019 Article en page(s) : pp 205 - 212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] allométrie
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] diamètre à hauteur de poitrine
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] inventaire forestier étranger (données)
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] télédétection par lidar
[Termes descripteurs IGN] théorie des probabilitésRésumé : (auteur) Biomass inventories that employ airborne laser scanning (ALS) require models that can predict tree diameter at breast height (DBH) from ALS-derived tree dimensions, as ALS can usually not directly measure DBH due to scanning angle, inadequate point density and canopy obstruction. Although some work has been done in using correlation as a measure of dependence to describe the linear relationship between variable means, none has investigated the copula-based measure of dependence for the prediction of DBH from ALS-derived height and crown diameter. Following the application of a locally-estimated copula method to 79 sample plots in eastern Finland, we compared the performance of the copula method with a baseline local regression (LOESS) model and an ordinary least squares (OLS) model. We found that the copula method outperformed the OLS model by decreasing 30% of the root-mean-squared error (RMSE). The copula method performed slightly better than the LOESS model for the original sample, but the results of the bootstrap samples showed that the variance in RMSE was sixteen times lower in the copula method than the LOESS model, suggesting that the copula had a more consistent and robust model performance across the 10,000 bootstrap samples. Moreover, while the LOESS model only predicts the conditional mean of the response variable, the copula method can also predict median and other quantiles. Numéro de notice : A2019 - 012 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2018.12.020 date de publication en ligne : 19/12/2018 En ligne : https://doi.org/10.1016/j.foreco.2018.12.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91615
in Forest ecology and management > vol 434 (28 February 2019) . - pp 205 - 212[article]