Détail de l'auteur
Auteur Dimitri Bulatov |
Documents disponibles écrits par cet auteur



Building detection and regularisation using DSM and imagery information / Yousif A. Mousa in Photogrammetric record, vol 34 n° 165 (March 2019)
![]()
[article]
Titre : Building detection and regularisation using DSM and imagery information Type de document : Article/Communication Auteurs : Yousif A. Mousa, Auteur ; Petra Helmholz, Auteur ; David Belton, Auteur ; Dimitri Bulatov, Auteur Année de publication : 2019 Article en page(s) : pp 85 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] masque
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] polygone
[Termes descripteurs IGN] régularisation
[Termes descripteurs IGN] simplification de contourRésumé : (Auteur) An automatic method for the regularisation of building outlines is presented, utilising a combination of data‐ and model‐driven approaches to provide a robust solution. The core part of the method includes a novel data‐driven approach to generate approximate building polygons from a list of given boundary points. The algorithm iteratively calculates and stores likelihood values between an arbitrary starting boundary point and each of the following boundary points using a function derived from the geometrical properties of a building. As a preprocessing step, building segments have to be identified using a robust algorithm for the extraction of a digital elevation model. Evaluation results on a challenging dataset achieved an average correctness of 96·3% and 95·7% for building detection and regularisation, respectively. Numéro de notice : A2019-454 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12275 date de publication en ligne : 26/03/2019 En ligne : https://doi.org/10.1111/phor.12275 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92867
in Photogrammetric record > vol 34 n° 165 (March 2019) . - pp 85 - 107[article]Land cover classification in combined elevation and optical images supported by OSM data, mixed-level features, and non-local optimization algorithms / Dimitri Bulatov in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
![]()
[article]
Titre : Land cover classification in combined elevation and optical images supported by OSM data, mixed-level features, and non-local optimization algorithms Type de document : Article/Communication Auteurs : Dimitri Bulatov, Auteur ; Gisela Häufel, Auteur ; Lucas Lucks, Auteur ; Melanie Pohl, Auteur Année de publication : 2019 Article en page(s) : pp 179 - 195 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] champ aléatoire de Markov
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] orthoimageRésumé : (Auteur) Land cover classification from airborne data is considered a challenging task in Remote Sensing. Even in the case of available elevation data, shadows and strong intra-class variations of appearances are abundant in urban terrain. In this paper, we propose an approach for supervised land cover classification that has three main contributions. Firstly, for the cumbersome task of training data sampling we propose an algorithm which combines the freely available OpenStreetMap data with the actual sensor data and requires only a minimum of user interaction. The key idea of this algorithm is to rasterize the vector data using a fast segmentation result. Secondly, pixel-wise classification may take long and be quite sensitive to the resolution and quality of input data. Therefore, superpixel decomposition of images, supported by a general framework on operations with superpixels, guarantees fast grouping of pixel-wise features and their assignment to one of four important classes (building, tree, grass and road). Particularly for extraction of street canyons lying in the shadowy regions, high-level features based on stripes are introduced. Finally, the output of a probabilistic learning algorithm can be postprocessed by a non-local optimization module operating on Markov Random Fields, thus allowing to correct noisy results using a smoothness prior. Extensive tests on three datasets of quite different nature have been performed with two probabilistic learners: The well-known Random Forest and by far less known Import Vector Machine are explored. Thus, this work provides insights about promising feature sets for both classifiers. The quantitative results for the ISPRS benchmark dataset Vaihingen are promising, achieving up to 94.5% and 87.1% accuracy on superpixel and on pixel level, respectively, despite the fact that only around 10% of available labeled data were used. At the same time, the results for two additional datasets, validated with the autonomously acquired training data, yielded a significantly lower number of misclassified superpixels. This confirms that the proposed algorithm on training data extraction works quite well in reducing errors of second kind. However, it tends to extract predominantly huge and easy-to-classify areas, while in complicated, ambiguous regions, first type errors often occur. For this and other algorithm shortcomings, directions of future research are outlined. Numéro de notice : A2019-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.3.179 date de publication en ligne : 01/03/2019 En ligne : https://doi.org/10.14358/PERS.85.3.179 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92476
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 3 (March 2019) . - pp 179 - 195[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019031 SL Revue Centre de documentation Revues en salle Disponible Simultaneous chain-forming and generalization of road networks / Susanne Wenzel in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
![]()
[article]
Titre : Simultaneous chain-forming and generalization of road networks Type de document : Article/Communication Auteurs : Susanne Wenzel, Auteur ; Dimitri Bulatov, Auteur Année de publication : 2019 Article en page(s) : pp 19 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] algorithme de Douglas-Peucker
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] axe médian
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] Graz
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] mise à jour automatique
[Termes descripteurs IGN] Munich
[Termes descripteurs IGN] objet géographique linéaire
[Termes descripteurs IGN] orthoimage
[Termes descripteurs IGN] polyligne
[Termes descripteurs IGN] primitive géométrique
[Termes descripteurs IGN] relation topologique
[Termes descripteurs IGN] réseau routier
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] squelettisation
[Termes descripteurs IGN] zone urbaine
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Streets are essential entities of urban terrain and their automatic extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological, and semantic aspects. Given a binary image representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. Thereby, we aim at a fusion of raw segments to longer chains which better match to the intuitive perception of what a street is. We propose a two-step approach for simultaneous chain-forming and generalization. First, we obtain an over-segmentation of the raw polylines. Then, a model selection approach is applied to decide whether two neighboring segments should be fused to a new geometric entity. For this purpose, we propose an iterative greedy optimization procedure in order to find a strong minimum of a cost function based on a Bayesian information criterion. Starting at the given initial raw segments, we thus can obtain a set of chains describing long alleys and important roundabouts. Within the procedure, topological attributes, such as junctions and neighborhood structures, are consistently updated, in a way that for the greedy optimization procedure, accuracy, model complexity, and topology are considered simultaneously. The results on two challenging datasets indicate the benefits of the proposed procedure and provide ideas for future work. Numéro de notice : A2019-026 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.1.19 date de publication en ligne : 01/01/2019 En ligne : https://doi.org/10.14358/PERS.85.1.19 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91962
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 1 (January 2019) . - pp 19 - 28[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019011 SL Revue Centre de documentation Revues en salle Disponible