Détail de l'auteur
Auteur Harith Aljumaily |
Documents disponibles écrits par cet auteur (1)



Integration of lidar data and GIS data for point cloud semantic enrichment at the point level / Harith Aljumaily in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
![]()
[article]
Titre : Integration of lidar data and GIS data for point cloud semantic enrichment at the point level Type de document : Article/Communication Auteurs : Harith Aljumaily, Auteur ; Debra F. Laefer, Auteur ; Dolores Cuadra, Auteur Année de publication : 2019 Article en page(s) : pp 29 - 42 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Dublin (Irlande ; ville)
[Termes IGN] enrichissement sémantique
[Termes IGN] extraction de la végétation
[Termes IGN] extraction du réseau routier
[Termes IGN] flore urbaine
[Termes IGN] image multibande
[Termes IGN] information sémantique
[Termes IGN] interpolation linéaire
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] segmentation
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] système de gestion de base de données
[Termes IGN] zone urbaineRésumé : (auteur) Commercial aerial laser scanning is generally delivered with point-by-point metadata for object identification, but current vendor-generated classification approaches (which rely exclusively on that data) generate high misclassification rates in urban areas. To overcome this problem and provide a fully scalable solution that harnesses distributed computing capabilities, this paper introduces a novel system, employing a MapReduce framework and existing GIS-based data, to provide more detailed and accurate classification. The approach goes beyond traditional gross-level classification (roads, buildings, trees, noise) by enriching the point cloud metadata with detailed semantic information about the object type. The approach was evaluated using two datasets of differing point density, separated by eight years for the same study area in Dublin, Ireland. As evaluated against manually classified data, classification quality ranged from 76% to 91% depending upon category and only 8% remained unclassified, as opposed to the commercial vendor's classification quality which ranged from 43% to 78% with 82% left unclassified. Numéro de notice : A2019-027 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.1.29 Date de publication en ligne : 01/01/2019 En ligne : https://doi.org/10.14358/PERS.85.1.29 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91964
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 1 (January 2019) . - pp 29 - 42[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019011 SL Revue Centre de documentation Revues en salle Disponible