Détail de l'auteur
Auteur Xin Wang |
Documents disponibles écrits par cet auteur



Hidden Markov map matching based on trajectory segmentation with heading homogeneity / Ge Cui in Geoinformatica [en ligne], vol 25 n° 1 (January 2021)
![]()
[article]
Titre : Hidden Markov map matching based on trajectory segmentation with heading homogeneity Type de document : Article/Communication Auteurs : Ge Cui, Auteur ; Wentao Bian, Auteur ; Xin Wang, Auteur Année de publication : 2021 Article en page(s) : pp 179 - 206 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] appariement de données localisées
[Termes descripteurs IGN] Hidden Markov Model (HMM)
[Termes descripteurs IGN] Map Matching
[Termes descripteurs IGN] réseau routier
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] trajectographie par GPS
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map matching is to locate GPS trajectories onto the road networks, which is an important preprocessing step for many applications based on GPS trajectories. Currently, hidden Markov model is one of the most widely used methods for map matching. However, both effectiveness and efficiency of conventional map matching methods based on hidden Markov model will decline in the dense road network, as the number of candidate road segments enormously increases around GPS point. To overcome the deficiency, this paper proposes a segment-based hidden Markov model for map matching. The proposed method first partitions GPS trajectory into several GPS sub-trajectories based on the heading homogeneity and length constraint; next, the candidate road segment sequences are searched out for each GPS sub-trajectory; last, GPS sub-trajectories and road segment sequences are matched in hidden Markov model, and the road segment sequences with the maximum probability is identified. A case study is conducted on a real GPS trajectory dataset, and the experiment result shows that the proposed method improves the effectiveness and efficiency of the conventional HMM map matching method. Numéro de notice : A2021-094 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00429-4 date de publication en ligne : 02/01/2021 En ligne : https://doi.org/10.1007/s10707-020-00429-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96934
in Geoinformatica [en ligne] > vol 25 n° 1 (January 2021) . - pp 179 - 206[article]Behavior-based location recommendation on location-based social networks / Seyyed Mohammadreza Rahimi in Geoinformatica [en ligne], vol 24 n° 3 (July 2020)
![]()
[article]
Titre : Behavior-based location recommendation on location-based social networks Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2020 Article en page(s) : pp 477 – 504 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] interface web
[Termes descripteurs IGN] modèle conceptuel de données localisées
[Termes descripteurs IGN] réseau social géodépendant
[Termes descripteurs IGN] système de recommandationRésumé : (auteur) Location recommendation methods on location-based social networks (LBSN) discover the locational preference of users along with their spatial movement patterns from users’ check-ins and provide users with recommendations of unvisited places. The growing popularity of LBSNs and abundance of shared location information has made location recommendation an active research area in the recent years. However, the existing methods suffer from one or more deficiencies such as data sparsity, cold-start users, ignoring users’ specific spatial and temporal behaviors, not utilizing the shared behaviors of the users. In this paper, we propose a novel location recommendation method, namely Behavior-based Location Recommendation (BLR). BLR recommends a location to a user based on the users’ repetitive behaviors and behaviors of similar users. Additionally, to better integrate the spatial information, BLR has two spatial components, a user-based spatial component to find the spatial preferences of the user, and a behavior-based spatial component to find locations of interest for different behaviors. Experimental studies on three real-world datasets show that BLR produces better location recommendations and can effectively address data sparsity and cold-start problems. Numéro de notice : A2020-370 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-019-00360-3 date de publication en ligne : 25/05/2019 En ligne : https://doi.org/10.1007/s10707-019-00360-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95265
in Geoinformatica [en ligne] > vol 24 n° 3 (July 2020) . - pp 477 – 504[article]Robust structure from motion based on relative rotations and tie points / Xin Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 5 (May 2019)
![]()
[article]
Titre : Robust structure from motion based on relative rotations and tie points Type de document : Article/Communication Auteurs : Xin Wang, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 347 - 359 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes descripteurs IGN] compensation locale par faisceaux
[Termes descripteurs IGN] équation linéaire
[Termes descripteurs IGN] orientation relative
[Termes descripteurs IGN] point de liaison (imagerie)
[Termes descripteurs IGN] rotation
[Termes descripteurs IGN] structure-from-motionRésumé : (Auteur) In this article, we present two new approaches for image orientation with a focus on robustness, starting with relative orientations of available image pairs, an incremental and a global one, and compare their performance. For the incremental approach, we first choose a suitable initial image pair, and we then iteratively extend the image cluster by adding new images. The rotations of these newly added images are estimated from relative rotations by single rotation averaging. In the next step, a linear equation system is set up for each new image to solve the translation parameters with triangulated tie points that can be viewed in that new image, followed by a resection for refinement. Finally, we refine the orientation parameters of the images by a local bundle adjustment. We also present a global method that consists of two parts: global rotation averaging, followed by setting up a large linear equation system to solve for all image translation parameters simultaneously; a final bundle adjustment is carried out to refine the results. We compare these two methods by analyzing results on different benchmark sets, including ordered and unordered image data sets from the Internet and two other challenging data sets to demonstrate the performance of our two approaches. We conclude that while the incremental method typically yields results of higher accuracy and performs better on the challenging data sets, our global method runs significantly faster. Numéro de notice : A2019-438 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.5.347 date de publication en ligne : 01/05/2019 En ligne : https://doi.org/10.14358/PERS.85.5.347 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92769
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 5 (May 2019) . - pp 347 - 359[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019051 SL Revue Centre de documentation Revues en salle Disponible Structure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation / Xin Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
![]()
[article]
Titre : Structure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation Type de document : Article/Communication Auteurs : Xin Wang, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 19 - 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] compensation par faisceaux
[Termes descripteurs IGN] estimation de pose
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] matrice de rotation
[Termes descripteurs IGN] orientation relative
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] recouvrement d'images
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] structure-from-motion
[Termes descripteurs IGN] vision par ordinateurRésumé : (auteur) In this paper, we present a new fast and robust method for structure from motion (SfM) for data sets potentially comprising thousands of ordered or unordered images. Our work focuses on the two most time-consuming procedures: (a) image matching and (b) pose estimation. For image matching, a new method employing a random k-d forest is proposed to quickly obtain pairs of overlapping images from an unordered set. After that, image matching and the estimation of relative orientation parameters are performed only for pairs found to be very likely to overlap. For pose estimation, we use a two-stage global approach, separating the determination of rotation matrices and translation parameters; the latter are computed simultaneously using a new method. In order to cope with outliers in the relative orientations, which global approaches are particularly sensitive to, we present a new constraint based on triplet loop closure errors of rotation and translation. Finally, a robust bundle adjustment is carried out to refine the image orientation parameters. We demonstrate the potential and limitations of our pipeline using various real-world datasets including ordered image data acquired from UAV (unmanned aerial vehicle) and other platforms as well as unordered data from the internet. The experiments show that our work performs better than comparable state-of-the-art SfM systems in terms of run time, while we achieve a similar accuracy and robustness. Numéro de notice : A2019-033 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.11.009 date de publication en ligne : 15/11/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.11.009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91970
in ISPRS Journal of photogrammetry and remote sensing > vol 147 (January 2019) . - pp 19 - 41[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019011 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019013 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2019012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt