Détail de l'auteur
Auteur Wei Zhou |
Documents disponibles écrits par cet auteur (2)



Multi‑constellation GNSS interferometric reflectometry for the correction of long-term snow height retrieval on sloping topography / Wei Zhou in GPS solutions, vol 26 n° 4 (October 2022)
![]()
[article]
Titre : Multi‑constellation GNSS interferometric reflectometry for the correction of long-term snow height retrieval on sloping topography Type de document : Article/Communication Auteurs : Wei Zhou, Auteur ; Liangke Huang, Auteur ; Bing Ji, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 140 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] hauteur (coordonnée)
[Termes IGN] manteau neigeux
[Termes IGN] pente
[Termes IGN] Ransac (algorithme)
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectométrie par GNSS
[Termes IGN] signal GNSS
[Termes IGN] système de référence altimétrique
[Termes IGN] topographie locale
[Termes IGN] transformation en ondelettes
[Termes IGN] valeur aberrante
[Vedettes matières IGN] AltimétrieRésumé : (auteur) Snow is a key parameter for global climate and hydrological systems. Global Navigation Satellite System interferometric reflectometry (GNSS-IR) has been applied to accurately monitor snow height (SH) with low cost and high temporal–spatial resolution. We proposed an improved GNSS-IR method using detrended signal-to-noise ratio (δSNR) arcs corresponding to multipath reflection tracks with different azimuths. After using wavelet decomposition and random sample consensus, noise with various frequencies for SNR arcs and outliers of reflector height (RH) estimations have been sequentially mitigated to enhance the availability of the proposed method. Thus, a height datum based on the ground RHs retrieved from multi-GNSS SNR data is established to compensate for the influence of topography variation with different azimuths in SH retrieval. The approximately 3-month δSNR datasets collected from three stations deployed on sloping topography were used to retrieve SH and compared with the existing method and in situ measurements. The results show that the root mean square errors of the retrievals derived from the proposed method for the three sites are between 4 and 8 cm, and the corresponding correlation surpasses 0.95 when compared to the reference SH datasets. Additionally, we compare the performance of a retrieval with the existing GNSS-IR Web App, and it shows an improvement in RMSE of about 7 cm. Furthermore, because topography variation has been considered, the average correction of SH retrievals is between 2 and 4 cm. The solution with the proposed method helps develop the applications of the GNSS-IR technique on complex topography. Numéro de notice : A2022-712 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01333-0 Date de publication en ligne : 15/09/2022 En ligne : https://doi.org/10.1007/s10291-022-01333-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101590
in GPS solutions > vol 26 n° 4 (October 2022) . - n° 140[article]Automated extraction of 3D vector topographic feature line from terrain point cloud / Wei Zhou in Geocarto international, vol 33 n° 10 (October 2018)
![]()
[article]
Titre : Automated extraction of 3D vector topographic feature line from terrain point cloud Type de document : Article/Communication Auteurs : Wei Zhou, Auteur ; Rencan Peng, Auteur ; Jian Dong, Auteur ; Tao Wang, Auteur Année de publication : 2018 Article en page(s) : pp 1036 - 1047 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] arbre aléatoire minimum
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] ligne caractéristique
[Termes IGN] lissage de données
[Termes IGN] modèle numérique de terrain
[Termes IGN] objet géographique linéaire
[Termes IGN] repère de Laplace
[Termes IGN] segmentation en régions
[Termes IGN] semis de pointsRésumé : (auteur) This paper presents an automated topographic feature lines detection method that directly extracts 3D vector topographic feature lines from terrain point cloud. First, signed surface variation (SSV) is introduced to extract the potential feature points. Secondly, the potential feature points are segmented to different clusters by combining region growing segmentation and conditional Euclidean clustering. In order to extract feature points, the potential feature points in each cluster are iteratively thinned using a HC-Laplacian smoothing method with SSV weighted taken into account. Besides, SSV-based and elevation-based simple rules are added for accelerating this thinning process. Finally, the feature lines are obtained by constructing the minimum spanning tree of the extracted feature points. By comparing with manually digitized reference lines, the correctness and the completeness of extracted results are about 80% or even higher, which are much higher than those extracted by D8 algorithm. Numéro de notice : A2019-046 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1325521 Date de publication en ligne : 18/05/2017 En ligne : https://doi.org/10.1080/10106049.2017.1325521 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92064
in Geocarto international > vol 33 n° 10 (October 2018) . - pp 1036 - 1047[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018041 RAB Revue Centre de documentation En réserve L003 Disponible