Détail de l'auteur
Auteur Jingming Tu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
[article]
Titre : Extraction of street pole-like objects based on plane filtering from mobile LiDAR data Type de document : Article/Communication Auteurs : Jingming Tu, Auteur ; Jian Yao, Auteur ; Li Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 749 - 768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte routière
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forme caractéristique
[Termes IGN] méthode robuste
[Termes IGN] octree
[Termes IGN] réseau routierRésumé : (auteur) Pole-like objects provide important street infrastructure for road inventory and road mapping. In this article, we proposed a novel pole-like object extraction algorithm based on plane filtering from mobile Light Detection and Ranging (LiDAR) data. The proposed approach is composed of two parts. In the first part, a novel octree-based split scheme was proposed to fit initial planes from off-ground points. The results of the plane fitting contribute to the extraction of pole-like objects. In the second part, we proposed a novel method of pole-like object extraction by plane filtering based on local geometric feature restriction and isolation detection. The proposed approach is a new solution for detecting pole-like objects from mobile LiDAR data. The innovation in this article is that we assumed that each of the pole-like objects can be represented by a plane. Thus, the essence of extracting pole-like objects will be converted to plane selecting problem. The proposed method has been tested on three data sets captured from different scenes. The average completeness, correctness, and quality of our approach can reach up to 87.66%, 88.81%, and 79.03%, which is superior to state-of-the-art approaches. The experimental results indicate that our approach can extract pole-like objects robustly and efficiently. Numéro de notice : A2021-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2993454 Date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2993454 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96758
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 749 - 768[article]Seamline network generation based on foreground segmentation for orthoimage mosaicking / Li Li in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
[article]
Titre : Seamline network generation based on foreground segmentation for orthoimage mosaicking Type de document : Article/Communication Auteurs : Li Li, Auteur ; Jingming Tu, Auteur ; Ye Gong, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 41 - 53 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme Graph-Cut
[Termes IGN] mosaïquage d'images
[Termes IGN] optimisation (mathématiques)
[Termes IGN] orthoimage
[Termes IGN] orthophotoplan numérique
[Termes IGN] raccord d'imagesRésumé : (Auteur) For multiple orthoimages mosaicking, the detection of an optimal seamline in an overlapped region and the generation of a seamline network are two key issues for creating a seamless and pleasant large-scale digital orthophoto map. In this paper, a novel system is proposed to generate the large-scale orthophoto by mosaicking multiple orthoimages via Graph cuts. The proposed system is comprised of two parts. In the first part, to ensure that the detected seamline avoids crossing the obvious objects, a novel foreground segmentation-based approach is proposed to detect the optimal seamline for two adjacent images. The foreground objects are segmented from the overlapped region at the superpixel level followed by the pixel-level seamline optimization. In the second part, we propose a novel seamline network generation approach to produce the large-scale orthophoto by mosaicking multiple orthoimages. The pairwise and junction regions extracted from the initial network are refined using two-label and multi-label Graph cuts, respectively. The key advantage of our proposed seamline network is that junction points can be automatically and optimally found using the multi-label Graph cuts. The experimental results on two groups of orthoimages show that our proposed system can generate high-quality seamline networks with less artifacts, and that it outperforms the state-of-the-art algorithm and the commercial software based on visual comparison and statistical evaluation. Numéro de notice : A2019-071 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.12.002 Date de publication en ligne : 20/12/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.12.002 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92158
in ISPRS Journal of photogrammetry and remote sensing > vol 148 (February 2019) . - pp 41 - 53[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt