Détail de l'auteur
Auteur Fahim Irfan Alam |
Documents disponibles écrits par cet auteur (1)



Conditional random field and deep feature learning for hyperspectral image classification / Fahim Irfan Alam in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
![]()
[article]
Titre : Conditional random field and deep feature learning for hyperspectral image classification Type de document : Article/Communication Auteurs : Fahim Irfan Alam, Auteur ; Jun Zhou, Auteur ; Alan Wee-Chung Liew, Auteur ; Xiuping Jia, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1612 - 1628 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multibande
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déconvolution
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] voxelRésumé : (Auteur) Image classification is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, a convolutional neural network (CNN) has established itself as a powerful model in classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the classification performance. In this paper, we propose a method to classify hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral band groups to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of 3-D data cubes. Furthermore, we introduce a deep deconvolution network that improves the final classification performance. We also introduced a new data set and experimented our proposed method on it along with several widely adopted benchmark data sets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method. Numéro de notice : A2019-131 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2867679 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2867679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92461
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1612 - 1628[article]