Détail de l'auteur
Auteur Zheye Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
A machine learning approach for detecting rescue requests from social media / Zheye Wang in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
[article]
Titre : A machine learning approach for detecting rescue requests from social media Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Nina S.N. Lam, Auteur ; Mingxuan Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 570 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] code postal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] filtrage d'information
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] terminologie
[Termes IGN] TwitterRésumé : (auteur) Hurricane Harvey in 2017 marked an important transition where many disaster victims used social media rather than the overloaded 911 system to seek rescue. This article presents a machine-learning-based detector of rescue requests from Harvey-related Twitter messages, which differentiates itself from existing ones by accounting for the potential impacts of ZIP codes on both the preparation of training samples and the performance of different machine learning models. We investigate how the outcomes of our ZIP code filtering differ from those of a recent, comparable study in terms of generating training data for machine learning models. Following this, experiments are conducted to test how the existence of ZIP codes would affect the performance of machine learning models by simulating different percentages of ZIP-code-tagged positive samples. The findings show that (1) all machine learning classifiers except K-nearest neighbors and Naïve Bayes achieve state-of-the-art performance in detecting rescue requests from social media; (2) using ZIP code filtering could increase the effectiveness of gathering rescue requests for training machine learning models; (3) machine learning models are better able to identify rescue requests that are associated with ZIP codes. We thereby encourage every rescue-seeking victim to include ZIP codes when posting messages on social media. This study is a useful addition to the literature and can be helpful for first responders to rescue disaster victims more efficiently. Numéro de notice : A2022-846 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110570 Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.3390/ijgi11110570 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102081
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 570[article]Space, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data / Zheye Wang in Cartography and Geographic Information Science, Vol 46 n° 4 (July 2019)
[article]
Titre : Space, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Xinyue Ye, Auteur Année de publication : 2019 Article en page(s) : pp 334 - 346 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Information géographique
[Termes IGN] catastrophe naturelle
[Termes IGN] données localisées des bénévoles
[Termes IGN] espace-temps
[Termes IGN] gestion de crise
[Termes IGN] modèle de Markov
[Termes IGN] modélisation 3D
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] outil d'aide à la décision
[Termes IGN] réseau social
[Termes IGN] risque naturel
[Termes IGN] tempêteRésumé : (Auteur) Various methods have been developed to investigate the geospatial information, temporal component, and message content in disaster-related social media data to enrich human-centric information for situational awareness. However, few studies have simultaneously analyzed these three dimensions (i.e. space, time, and content). With an attempt to bring a space–time perspective into situational awareness, this study develops a novel approach to integrate space, time, and content dimensions in social media data and enable a space–time analysis of detailed social responses to a natural disaster. Using Markov transition probability matrix and location quotient, we analyzed the Hurricane Sandy tweets in New York City and explored how people’s conversational topics changed across space and over time. Our approach offers potential to facilitate efficient policy/decision-making and rapid response in mitigations of damages caused by natural disasters. Numéro de notice : A2019-201 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1483740 Date de publication en ligne : 18/06/2018 En ligne : https://doi.org/10.1080/15230406.2018.1483740 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92657
in Cartography and Geographic Information Science > Vol 46 n° 4 (July 2019) . - pp 334 - 346[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2019041 RAB Revue Centre de documentation En réserve L003 Disponible