Détail de l'auteur
Auteur Mari Myllymäki |
Documents disponibles écrits par cet auteur (2)



Comparison of spatially and nonspatially explicit nonlinear mixed effects models for Norway spruce individual tree growth under single-tree selection / Simone Bianchi in Forests, vol 11 n° 12 (December 2020)
![]()
[article]
Titre : Comparison of spatially and nonspatially explicit nonlinear mixed effects models for Norway spruce individual tree growth under single-tree selection Type de document : Article/Communication Auteurs : Simone Bianchi, Auteur ; Mari Myllymäki, Auteur ; Jouni Siipilehto, Auteur ; Hannu Salminen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 1338 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] arbre (flore)
[Termes IGN] croissance des arbres
[Termes IGN] forêt boréale
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle non linéaire
[Termes IGN] Picea abies
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Background and Objectives: Continuous cover forestry is of increasing importance, but operational forest growth models are still lacking. The debate is especially open if more complex spatial approaches would provide a worthwhile increase in accuracy. Our objective was to compare a nonspatial versus a spatial approach for individual Norway spruce tree growth models under single-tree selection cutting.
Materials and Methods: We calibrated nonlinear mixed models using data from a long-term experiment in Finland (20 stands with 3538 individual trees for 10,238 growth measurements). We compared the use of nonspatial versus spatial predictors to describe the competitive pressure and its release after cutting. The models were compared in terms of Akaike Information Criteria (AIC), root mean square error (RMSE), and mean absolute bias (MAB), both with the training data and after cross-validation with a leave-one-out method at stand level.
Results: Even though the spatial model had a lower AIC than the nonspatial model, RMSE and MAB of the two models were similar. Both models tended to underpredict growth for the highest observed values when the tree-level random effects were not used. After cross-validation, the aggregated predictions at stand level well represented the observations in both models. For most of the predictors, the use of values based on trees’ height rather than trees’ diameter improved the fit. After single-tree selection cutting, trees had a growth boost both in the first and second five-year period after cutting, however, with different predicted intensity in the two models.
Conclusions: Under the research framework here considered, the spatial modeling approach was not more accurate than the nonspatial one. Regarding the single-tree selection cutting, an intervention regime spaced no more than 15 years apart seems necessary to sustain the individual tree growth. However, the model’s fixed effect parts were not able to capture the high growth of the few fastest-growing trees, and a proper estimation of site potential is needed for uneven-aged stands.Numéro de notice : A2020-578 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.3390/f11121338 Date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.3390/f11121338 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97034
in Forests > vol 11 n° 12 (December 2020) . - n° 1338[article]Correcting for nondetection in estimating forest characteristics from single-scan terrestrial laser measurements / Mikko Kuronen in Canadian Journal of Forest Research, vol 49 n° 1 (janvier 2019)
![]()
[article]
Titre : Correcting for nondetection in estimating forest characteristics from single-scan terrestrial laser measurements Type de document : Article/Communication Auteurs : Mikko Kuronen, Auteur ; Helena M. Henttonen, Auteur ; Mari Myllymäki, Auteur Année de publication : 2019 Article en page(s) : pp 96 - 103 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] densité de la végétation
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur systématique
[Termes IGN] estimateur
[Termes IGN] estimation statistique
[Termes IGN] occultation du signal
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestreRésumé : (Auteur) Un problème inhérent à l’utilisation du balayage laser terrestre avec un seul balayage vient du fait que certains arbres sont cachés par d’autres et ne sont donc pas détectés dans l’analyse. Un estimateur de base des caractéristiques de la forêt, comme la densité ou la surface terrière, est basé sur la zone visible d’un balayage. Cependant, une simple compensation de la non-détection par la zone visible peut entraîner un biais important même dans les forêts répondant à une distribution de Poisson, surtout si la détection d’un arbre dépend de sa taille. Nous proposons un nouvel estimateur qui est une généralisation de l’estimateur basé sur la zone visible. Plus important encore, le nouvel estimateur permet d’utiliser différentes règles de détection ; par exemple, la visibilité requise pour la détection d’un arbre peut être complète ou partielle. Une étude par simulation a montré qu’il fonctionne correctement dans différents types de forêts, simulées et empiriques, avec différentes règles de détection. [Traduit par la Rédaction] Numéro de notice : A2019-231 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1139/cjfr-2018-0072 En ligne : https://doi.org/10.1139/cjfr-2018-0072 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92745
in Canadian Journal of Forest Research > vol 49 n° 1 (janvier 2019) . - pp 96 - 103[article]