Détail de l'auteur
Auteur André C. Carrilho |
Documents disponibles écrits par cet auteur (2)



The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space / Renato César Dos santos in Applied geomatics, vol 13 n° 4 (December 2021)
![]()
[article]
Titre : The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; André C. Carrilho, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 499 - 513 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme de Otsu
[Termes IGN] analyse de groupement
[Termes IGN] Brésil
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] planéité
[Termes IGN] semis de points
[Termes IGN] seuillageRésumé : (auteur) Building change detection techniques are essential for several urban applications. In this context, multi-temporal airborne LiDAR data has been considered an effective alternative since it has some advantages over conventional photogrammetry. Despite several works in the literature, the automatic class definition with great accuracy and performance remains a challenge in change detection. The developed strategies usually explore training samples or empirical thresholds to discriminate the classes. To overcome this limitation, we proposed an automatic building change detection method based on Otsu algorithm and median planarity attribute computed from eigenvalues. The main contribution corresponds to the automatic and unsupervised identification of building changes. The experiments were conducted using airborne LiDAR data from two epochs: 2012 and 2014. From qualitative and quantitative analysis, the robustness of the proposed method in detecting building changes in urban areas was evaluated, presenting completeness and correctness around 99% and 76%, respectively. Numéro de notice : A2021-856 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s12518-021-00371-6 Date de publication en ligne : 24/04/2021 En ligne : https://doi.org/10.1007/s12518-021-00371-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99062
in Applied geomatics > vol 13 n° 4 (December 2021) . - pp 499 - 513[article]Extraction of building roof planes with stratified random sample consensus / André C. Carrilho in Photogrammetric record, vol 33 n° 163 (September 2018)
![]()
[article]
Titre : Extraction of building roof planes with stratified random sample consensus Type de document : Article/Communication Auteurs : André C. Carrilho, Auteur ; Mauricio Galo, Auteur Année de publication : 2018 Article en page(s) : pp 363 - 380 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] morphologie mathématique
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] varianceRésumé : (Auteur) This paper describes a consensus‐set estimation for building roof‐plane detection using a stratified random sample consensus (sRANSAC) algorithm applied to point clouds acquired by laser scanning systems. The main idea is to use one initial classification to generate consensus‐set candidates to optimise the sampling mechanism compared to the original RANSAC. The initial classification is performed using mathematical morphology to filter ground returns and estimate local variance information to detect potential planar regions. Thus, the algorithm can prioritise points within planar segments and the number of iterations can be estimated dynamically from available data. The results based on experiments using five different lidar datasets indicate that the proposed method reduces the number of computations for building roof‐plane detection and also improves accuracy compared to RANSAC. Numéro de notice : A2018-620 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12254 Date de publication en ligne : 21/09/2018 En ligne : https://doi.org/10.1111/phor.12254 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92864
in Photogrammetric record > vol 33 n° 163 (September 2018) . - pp 363 - 380[article]