Détail de l'auteur
Auteur Meng Zhang |
Documents disponibles écrits par cet auteur



Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
![]()
[article]
Titre : Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data Type de document : Article/Communication Auteurs : Yaotong Cai, Auteur ; Xinyu Li, Auteur ; Meng Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 102164 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] algorithme de généralisation
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] cartographie thématique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] filtre de déchatoiement
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone humideRésumé : (auteur) Wetland ecosystems have experienced dramatic challenges in the past few decades due to natural and human factors. Wetland maps are essential for the conservation and management of terrestrial ecosystems. This study is to obtain an accurate wetland map using an object-based stacked generalization (Stacking) method on the basis of multi-temporal Sentinel-1 and Sentinel-2 data. Firstly, the Robust Adaptive Spatial Temporal Fusion Model (RASTFM) is used to get time series Sentinel-2 NDVI, from which the vegetation phenology variables are derived by the threshold method. Subsequently, both vertical transmit-vertical receive (VV) and vertical transmit-horizontal receive (VH) polarization backscatters (σ0 VV, σ0 VH) are obtained using the time series Sentinel-1 images. Speckle noise inherent in SAR data, resulting in over-segmentation or under-segmentation, can affect image segmentation and degrade the accuracies of wetland classification. Therefore, we segment Sentinel-2 multispectral images to delineate meaningful objects in this study. Then, in order to reduce data redundancy and computation time, we analyze the optimal feature combination using the Sentinel-2 multispectral images, Sentinel-2 NDVI time series, phenological variables and other vegetation index derived from Sentinel-2 multispectral images, as well as time series Sentinel-1 backscatters at the object level. Finally, the stacked generalization algorithm is utilized to extract the wetland information based on the optimal feature combination in the Dongting Lake wetland. The overall accuracy and Kappa coefficient of the object-based stacked generalization method are 92.46% and 0.92, which are 3.88% and 0.04 higher than that using the pixel-based method. Moreover, the object-based stacked generalization algorithm is superior to single classifiers in classifying vegetation of high heterogeneity areas. Numéro de notice : A2020-748 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102164 date de publication en ligne : 07/06/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102164 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96398
in International journal of applied Earth observation and geoinformation > vol 92 (October 2020) . - n° 102164[article]Combining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes / Meng Zhang in Geocarto international, vol 34 n° 10 ([15/07/2019])
![]()
[article]
Titre : Combining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes Type de document : Article/Communication Auteurs : Meng Zhang, Auteur ; Yongnian Zeng, Auteur ; Wei Huang, Auteur ; Songnian Li, Auteur Année de publication : 2019 Article en page(s) : pp 1144 - 1161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] hétérogénéité
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] paysage urbain
[Termes descripteurs IGN] zone humideRésumé : (auteur) Remote sensing has been proven promising in wetland mapping. However, conventional methods in a complex and heterogeneous urban landscape usually use mono temporal Landsat TM/ETM + images, which have great uncertainty due to the spectral similarity of different land covers, and pixel-based classifications may not meet the accuracy requirement. This paper proposes an approach that combines spatiotemporal fusion and object-based image analysis, using the spatial and temporal adaptive reflectance fusion model to generate a time series of Landsat 8 OLI images on critical dates of sedge swamp and paddy rice, and the time series of MODIS NDVI to calculate phenological parameters for identifying wetlands with an object-based method. The results of a case study indicate that different types of wetlands can be successfully identified, with 92.38%. The overall accuracy and 0.85 Kappa coefficient, and 85% and 90% for the user’s accuracies of sedge swamp and paddy respectively. Numéro de notice : A2019-302 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1474275 date de publication en ligne : 17/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1474275 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93222
in Geocarto international > vol 34 n° 10 [15/07/2019] . - pp 1144 - 1161[article]