Détail de l'auteur
Auteur Mehdi Khoshboresh Masouleh |
Documents disponibles écrits par cet auteur (3)



A deep multi-modal learning method and a new RGB-depth data set for building roof extraction / Mehdi Khoshboresh Masouleh in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
![]()
[article]
Titre : A deep multi-modal learning method and a new RGB-depth data set for building roof extraction Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2021 Article en page(s) : pp 759 - 766 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] détection du bâti
[Termes IGN] données multisources
[Termes IGN] effet de profondeur cinétique
[Termes IGN] empreinte
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] toitRésumé : (Auteur) This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256 training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively. Numéro de notice : A2021-677 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00007R2 Date de publication en ligne : 01/10/2021 En ligne : https://doi.org/10.14358/PERS.21-00007R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98878
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 759 - 766[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery / Mehdi Khoshboresh Masouleh in Applied geomatics, vol 12 n° 2 (June 2020)
![]()
[article]
Titre : A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2020 Article en page(s) : pp 107 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction automatique
[Termes IGN] gestion de trafic
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] modèle orienté objet
[Termes IGN] orthophotographie
[Termes IGN] segmentation sémantique
[Termes IGN] trafic routier
[Termes IGN] véhicule automobileRésumé : (auteur) Automatic car extraction (ACE) from high-resolution airborne imagery (i.e., true-orthophoto) has been a hot research topic in the field of photogrammetry and machine learning. ACE from high-resolution airborne imagery is the most suitable method for control and monitoring practices in large cities such as traffic management. The use of deep learning–based feature extraction methods, such as convolutional neural networks, have been providing state-of-the-art performance in the last few years, particularly, these techniques have been successfully applied to automatic object extraction from images. In this paper, we proposed a novel hybrid method to take advantage of the semantic segmentation of high-resolution airborne imagery to ACE that is realized based on the combination of deep convolutional neural networks and restricted Boltzmann machine (RBM). This hybrid method is called RBMDeepNet. We trained and tested our model on the ISPRS Potsdam and Vaihingen benchmark datasets (non-big data) which is more challenging for ACE. Here, Potsdam data is a true-color dataset, and Vaihingen data is a false-color dataset. The results obtained in the present study showed that the proposed method for ACE from high-resolution airborne imagery achieves a 7% improvement in accuracy with about 10% improvement in processing time compared to similar methods. Numéro de notice : A2020-558 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-019-00285-4 Date de publication en ligne : 06/08/2019 En ligne : https://doi.org/10.1007/s12518-019-00285-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95868
in Applied geomatics > vol 12 n° 2 (June 2020) . - pp 107 - 119[article]Development and evaluation of a deep learning model for real-time ground vehicle semantic segmentation from UAV-based thermal infrared imagery / Mehdi Khoshboresh Masouleh in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
![]()
[article]
Titre : Development and evaluation of a deep learning model for real-time ground vehicle semantic segmentation from UAV-based thermal infrared imagery Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2019 Article en page(s) : pp 172 - 186 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] image thermique
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] véhicule automobileRésumé : (Auteur) Real-time unmanned aerial vehicles (UAVs)-based thermal infrared images processing, due to high spatial resolution and knowledge of the various infrared radiant energy level distribution of solid bodies, has important applications such as monitoring and control of the various phenomena in different natural situations. One of these applications is monitoring the ground vehicles in cities by using detection or semantic segmentation of them in the thermal images. In this research, our purpose is to improve the performance of deep learning combined model by using Gaussian-Bernoulli Restricted Boltzmann Machine (GB-RBM) specifications for the segmentation of the ground vehicles from UAV-based thermal infrared imagery. The proposed model is studied in three steps. First, designing the proposed model by using an encoder-decoder structure and addition of extracted features from convolutional layers and restricted Boltzmann machine in the network. Second, the implementation of the research goals on four sets of UAV-based thermal infrared imagery named NPU_CS_UAV_IR_DATA that was collected from some streets of China by using FLIR TAU2 thermal infrared sensor in 2017. Finally, analyzing the performance of the proposed model by using five state-of-the-art models in semantic segmentation. The results evaluated the performance of the proposed model as a robust model with the average precision and average processing time of approximately 0.97, and 19.73 s for all datasets, respectively. Numéro de notice : A2019-315 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.07.009 Date de publication en ligne : 25/07/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.07.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93341
in ISPRS Journal of photogrammetry and remote sensing > vol 155 (September 2019) . - pp 172 - 186[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019091 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019093 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2019092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt