Détail de l'auteur
Auteur Cheikh Mohamedou |
Documents disponibles écrits par cet auteur (2)



Potential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space / Cheikh Mohamedou in Canadian Journal of Forest Research, Vol 52 n° 4 (April 2022)
![]()
[article]
Titre : Potential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space Type de document : Article/Communication Auteurs : Cheikh Mohamedou, Auteur ; Annika S. Kangas, Auteur ; Alireza Hamedianfar, Auteur ; Jari Vauhkonen, Auteur Année de publication : 2022 Article en page(s) : pp 439 - 449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données spatiotemporelles
[Termes IGN] dynamique de la végétation
[Termes IGN] estimation bayesienne
[Termes IGN] fusion de données
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] série temporelle
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Forest resource assessments based on multi-source and multi-temporal data have become more common. Therefore, enhancing the prediction capabilities of forestry dynamics by efficiently pooling and analyzing time-series and spatial sequential data is now more pivotal. Bayesian filtering and smoothing provide a well-defined formalism for the fusion or assimilation of various data. We ascertained how often the generic, standardized Bayesian framework is used in the scientific literature and whether such an approach is beneficial for forestry applications. A review of the literature showed that the use of Bayesian methods appears to be less common in forestry than in other disciplines, particularly remote sensing. Specifically, time-series analyses were found to favor ad hoc methods. Our review did not reveal strong numeric evidence for better performance by the various Bayesian approaches, but this result may be partly due to the challenge in comparing a variety of methods for different prediction tasks. We identified methodological challenges related to assimilating predictions of forest development; in particular, combining modelled growth with disturbances due to both forest operations and natural phenomena. Nevertheless, the Bayesian frameworks provide possibilities to efficiently combine and update prior and posterior predictive distributions and derive related uncertainty measures that appear under-utilized in forestry. Numéro de notice : A2022-315 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1139/cjfr-2021-0145 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.1139/cjfr-2021-0145 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100415
in Canadian Journal of Forest Research > Vol 52 n° 4 (April 2022) . - pp 439 - 449[article]Using LiDAR-modified topographic wetness index, terrain attributes with leaf area index to improve a single-tree growth model in south-eastern Finland / Cheikh Mohamedou in Forestry, an international journal of forest research, vol 92 n° 3 (July 2019)
![]()
[article]
Titre : Using LiDAR-modified topographic wetness index, terrain attributes with leaf area index to improve a single-tree growth model in south-eastern Finland Type de document : Article/Communication Auteurs : Cheikh Mohamedou, Auteur ; Lauri Korhonen, Auteur ; Kalle Eerikäinen, Auteur ; Timo Tokola, Auteur Année de publication : 2019 Article en page(s) : pp 253 - 263 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] croissance des arbres
[Termes IGN] diamètre des arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur systématique
[Termes IGN] Finlande
[Termes IGN] humidité du sol
[Termes IGN] indice d'humidité
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de croissance végétale
[Termes IGN] Perceptron multicoucheRésumé : (Auteur) Tree growth information is crucial in forest management and planning. Terrain-derived attributes such as the topographic wetness index (TWI), in addition to leaf area index (LAI) are closely related to tree growth, but are not commonly used in empirical growth models. In this study, we examined if modified TWI and LAI estimated from airborne light detection and ranging (LiDAR) data could be used to improve the predictions of a national single-tree diameter growth model. Altogether 1118 sample trees were selected within 197 subjectively placed plots in randomly selected forest stands in south-eastern Finland. Linear mixed effect (LME) and multilayer perceptron models were used to model the bias of 5-year growth predictions of the model and thus ultimately improve its predictions. The root mean square error (RMSE) of the national model was 0.604 cm. LME modelling reduced this value to 0.404 cm and MLP to 0.568 cm. The predictors included in the best-performing LME model were modified TWI, LAI estimated from LiDAR intensities, and elevation. Without an LAI estimate, the best RMSE was 0.436 cm. When applied as such, original and modified TWIs produced similar accuracy. We conclude that both TWI and LAI obtained from LiDAR data improve the diameter growth predictions of the national model. Numéro de notice : A2019-293 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/forestry/cpz010 Date de publication en ligne : 28/02/2019 En ligne : https://doi.org/10.1093/forestry/cpz010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93184
in Forestry, an international journal of forest research > vol 92 n° 3 (July 2019) . - pp 253 - 263[article]