Détail de l'auteur
Auteur Mikko Peltoniemi |
Documents disponibles écrits par cet auteur



Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory / Francesco Minunno in Forest ecology and management, vol 440 (15 May 2019)
![]()
[article]
Titre : Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory Type de document : Article/Communication Auteurs : Francesco Minunno, Auteur ; Mikko Peltoniemi, Auteur ; Sanna Härkönen, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 208-257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] assimilation des données
[Termes descripteurs IGN] Betula pendula
[Termes descripteurs IGN] bois sur pied
[Termes descripteurs IGN] carbone
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] diamètre à hauteur de poitrine
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] étalonnage de modèle
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] gestion forestière
[Termes descripteurs IGN] hauteur à la base du houppier
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] inventaire forestier étranger (données)
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modélisation de la forêt
[Termes descripteurs IGN] Pinus sylvestrisRésumé : (auteur) Policy-relevant forest models must be environment and management sensitive and provide unbiased estimates of predicted variables over their intended areas of application. While empirical models derive their structure and parameters from representative data sets, process-based model (PBM) parameters should be evaluated in ranges that have a biological meaning independently of output data. At the same time PBMs should be calibrated against observations in order to obtain unbiased estimates and an understanding of their predictive capability. By means of model data assimilation, we Bayesian calibrated a forest model (PREBAS) using an extensive dataset that covered a wide range of climatic conditions, species composition and management practices. PREBAS was calibrated for three species in Finland: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies [L.] H. Karst.) and Silver birch (Betula pendula L.). Data assimilation was strongly effective in reducing the uncertainty of PREBAS parameters and predictions. A country-generic calibration showed robust performances in predicting forest variables and the results were consistent with yield tables and national forest statistics. The posterior predictive uncertainty of the model was mainly influenced by the uncertainty of the structural and measurement error. Numéro de notice : A2019-486 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2019.02.041 date de publication en ligne : 20/03/2019 En ligne : https://doi.org/10.1016/j.foreco.2019.02.041 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93666
in Forest ecology and management > vol 440 (15 May 2019) . - pp 208-257[article]