Détail de l'auteur
Auteur Ming Hao |
Documents disponibles écrits par cet auteur



Building change detection using a shape context similarity model for LiDAR data / Xuzhe Lyu in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Building change detection using a shape context similarity model for LiDAR data Type de document : Article/Communication Auteurs : Xuzhe Lyu, Auteur ; Ming Hao, Auteur ; Wenzhong Shi, Auteur Année de publication : 2020 Article en page(s) : n° 678 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] reconnaissance de formes
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) In this paper, a novel building change detection approach is proposed using statistical region merging (SRM) and a shape context similarity model for Light Detection and Ranging (LiDAR) data. First, digital surface models (DSMs) are generated from LiDAR acquired at two different epochs, and the difference data D-DSM is created by difference processing. Second, to reduce the noise and registration error of the pixel-based method, the SRM algorithm is applied to segment the D-DSM, and multi-scale segmentation results are obtained under different scale values. Then, the shape context similarity model is used to calculate the shape similarity between the segmented objects and the buildings. Finally, the refined building change map is produced by the k-means clustering method based on shape context similarity and area-to-length ratio. The experimental results indicated that the proposed method could effectively improve the accuracy of building change detection compared with some popular change detection methods. Numéro de notice : A2020-732 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110678 date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110678 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96345
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 678[article]Robust multisource remote sensing image registration method based on scene shape similarity / Ming Hao in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
![]()
[article]
Titre : Robust multisource remote sensing image registration method based on scene shape similarity Type de document : Article/Communication Auteurs : Ming Hao, Auteur ; Jian Jin, Auteur ; Mengchao Zhou, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 725 - 736 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] appariement de modèles
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] figuré du terrain
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] point de liaison (imagerie)
[Termes descripteurs IGN] superposition d'images
[Termes descripteurs IGN] temps de pose
[Termes descripteurs IGN] transformation linéaireRésumé : (Auteur) Image registration is an indispensable component of remote sensing applications, such as disaster monitoring, change detection, and classification. Grayscale differences and geometric distortions often occur among multisource images due to their different imaging mechanisms, thus making it difficult to acquire feature points and match corresponding points. This article proposes a scene shape similarity feature (SSSF) descriptor based on scene shape features and shape context algorithms. A new similarity measure called SSSFncc is then defined by computing the normalized correlation coefficient of the SSSF descriptors between multisource remote sensing images. Furthermore, the tie points between the reference and the sensed image are extracted via a template matching strategy. A global consistency check method is then used to remove the mismatched tie points. Finally, a piecewise linear transform model is selected to rectify the remote sensing image. The proposed SSSFncc aims to extract the scene shape similarity between multisource images. The accuracy of the proposed SSSFncc is evaluated using five pairs of experimental images from optical, synthetic aperture radar, and map data. Registration results demonstrate that the SSSFncc similarity measure is robust enough for complex nonlinear grayscale differences among multisource remote sensing images. The proposed method achieves more reliable registration outcomes compared with other popular methods. Numéro de notice : A2019-521 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.10.725 date de publication en ligne : 01/10/2019 En ligne : https://doi.org/10.14358/PERS.85.10.725 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93989
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 10 (October 2019) . - pp 725 - 736[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019101 SL Revue Centre de documentation Revues en salle Disponible