Détail de l'auteur
Auteur Divyesh Varade |
Documents disponibles écrits par cet auteur



Assessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using Landsat-8 data / Divyesh Varade in Geocarto international, vol 35 n° 6 ([01/05/2020])
![]()
[article]
Titre : Assessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using Landsat-8 data Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Onkar Dikshit, Auteur Année de publication : 2020 Article en page(s) : pp 641 - 662 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] emissivité
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] hiver
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Sentinel-3
[Termes descripteurs IGN] Inde
[Termes descripteurs IGN] manteau neigeux
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] précision de détermination de surface
[Termes descripteurs IGN] seuillage
[Termes descripteurs IGN] température au solRésumé : (auteur) In this study, we propose a modified thresholds method for the determination of land surface emissivity (LSE) for snow covered mountainous areas. The conventional Normalized Differenced Vegetation Index (NDVI) thresholds method (NDVITHM) does not discriminate the snow covered pixels with soil pixels in assigning the LSE based on NDVI thresholds. In the proposed approach, we incorporate different thresholding rules based on the Normalized Differenced Snow Index and the S3 index for incorporating separability in the LSE for the snow covered pixels. The LSE thus derived is used to determine the land surface temperature using the Single Channel Method. The approach was evaluated for a study area around the Kullu Valley in the lower Indian Himalayas for a dataset of the winter season of Landsat-8 multispectral data. The observed coefficient of determination values indicated that the proposed method yielded better results with respect to the conventional NDVITHM approach. Numéro de notice : A2020-203 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520928 date de publication en ligne : 26/12/2018 En ligne : https://doi.org/10.1080/10106049.2018.1520928 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94878
in Geocarto international > vol 35 n° 6 [01/05/2020] . - pp 641 - 662[article]Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
![]()
[article]
Titre : Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Anudeep Sure, Auteur ; Onkar Dikshit, Auteur Année de publication : 2019 Article en page(s) : pp 1552 - 1567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse linéaire des mélanges spectraux
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] image EO1-Hyperion
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Inde
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies. Numéro de notice : A2019-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1497096 date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1497096 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94101
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1552 - 1567[article]