Détail de l'auteur
Auteur Justine Rivers-Moore |
Documents disponibles écrits par cet auteur (1)



Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series / Mathieu Fauvel in Remote sensing of environment, Vol 237 (February 2020)
![]()
[article]
Titre : Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series Type de document : Article/Communication Auteurs : Mathieu Fauvel, Auteur ; Maylis Lopes, Auteur ; Titouan Dubo, Auteur ; Justine Rivers-Moore, Auteur ; Pierre-Louis Frison , Auteur ; Nicolas Gross, Auteur ; Annie Ouin, Auteur
Année de publication : 2020 Projets : SEBIOREF / Ouin, Annie Article en page(s) : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] biodiversité végétale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Haute-Garonne (31)
[Termes IGN] image radar moirée
[Termes IGN] image RapidEye
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de diversité
[Termes IGN] indice de végétation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] prairie
[Termes IGN] série temporelle
[Termes IGN] taxinomieRésumé : (auteur) The prediction of grasslands plant diversity using satellite image time series is considered in this article. Fifteen months of freely available Sentinel optical and radar data were used to predict taxonomic and functional diversity at the pixel scale (10 m × 10 m) over a large geographical extent (40,000 km2). 415 field measurements were collected in 83 grasslands to train and validate several statistical learning methods. The objective was to link the satellite spectro-temporal data to the plant diversity indices. Among the several diversity indices tested, Simpson and Shannon indices were best predicted with a coefficient of determination around 0.4 using a Random Forest predictor and Sentinel-2 data. The use of Sentinel-1 data was not found to improve significantly the prediction accuracy. Using the Random Forest algorithm and the Sentinel-2 time series, the prediction of the Simpson index was performed. The resulting map highlights the intra-parcel variability and demonstrates the capacity of satellite image time series to monitor grasslands plant taxonomic diversity from an ecological viewpoint. Numéro de notice : A2020-004 Affiliation des auteurs : UPEM-LASTIG+Ext (2016-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2019.111536 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1016/j.rse.2019.111536 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94296
in Remote sensing of environment > Vol 237 (February 2020) . - 13 p.[article]