Détail de l'auteur
Auteur Maria Luz Gil-Docampo |
Documents disponibles écrits par cet auteur



Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry / Maria Luz Gil-Docampo in Geocarto international, vol 35 n° 7 ([15/05/2020])
![]()
[article]
Titre : Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry Type de document : Article/Communication Auteurs : Maria Luz Gil-Docampo, Auteur ; Marcos Arza-García, Auteur ; Juan Ortiz-Sanz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 687 - 699 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] acquisition d'images
[Termes descripteurs IGN] agronomie
[Termes descripteurs IGN] biomasse
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] photogrammétrie aérienne
[Termes descripteurs IGN] sol arable
[Termes descripteurs IGN] structure-from-motionRésumé : (Auteur) Methods of estimating the total amount of above-ground biomass (AGB) in crop fields are generally based on labourious, random, and destructive in situ sampling. This study proposes a methodology for estimating herbaceous crop biomass using conventional optical cameras and structure from motion (SfM) photogrammetry. The proposed method is based on the determination of volumes according to the difference between a digital terrain model (DTM) and digital surface model (DSM) of vegetative cover. A density factor was calibrated based on a subset of destructive random samples to relate the volume and biomass and efficiently quantify the total AGB. In all cases, RMSE Z values less than 0.23 m were obtained for the DTM-DSM coupling. Biomass field data confirmed the goodness of fit of the yield-biomass estimation (R2=0.88 and 1.12 kg/ha) mainly in plots with uniform vegetation coverage. Furthermore, the method was demonstrated to be scalable to multiple platform types and sensors. Numéro de notice : A2020-186 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1552322 date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1552322 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94993
in Geocarto international > vol 35 n° 7 [15/05/2020] . - pp 687 - 699[article]Plant survival monitoring with UAVs and multispectral data in difficult access afforested areas / Maria Luz Gil-Docampo in Geocarto international, vol 35 n° 2 ([01/02/2020])
![]()
[article]
Titre : Plant survival monitoring with UAVs and multispectral data in difficult access afforested areas Type de document : Article/Communication Auteurs : Maria Luz Gil-Docampo, Auteur ; Juan Ortiz-Sanz, Auteur ; S. Martínez-Rodríguez, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 128 - 140 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] aire protégée
[Termes descripteurs IGN] analyse de survie
[Termes descripteurs IGN] analyse en composantes principales
[Termes descripteurs IGN] climat aride
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] mortalité
[Termes descripteurs IGN] reboisement
[Termes descripteurs IGN] ressources en eau
[Termes descripteurs IGN] surveillance de la végétation
[Termes descripteurs IGN] télédétection aérienneRésumé : (Auteur) Water supply devices enable afforestation in dry climates and on poor lands with generally high success rates. Previous survival analyses have been based on the direct observation of each individual plant in the field, which entails considerable effort and costs. This study provides a low-cost method to discriminate between live and dead plants in afforestation that can efficiently replace traditional field inspections through the use of unmanned aerial vehicles (UAVs) equipped with RGB and NIR sensors. The method combines the use of a conventional camera with an identical camera modified to record the NIR channel. Survival analysis was performed with digital image processing techniques based on calculated indices associated with plant vigour and PCA-based decorrelation. The method yielded results with high global accuracy rates (∼96.2%) with a minimum percentage of doubtful plants, even in young plantations (seedlings Numéro de notice : A2020-035 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1508312 date de publication en ligne : 02/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1508312 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94517
in Geocarto international > vol 35 n° 2 [01/02/2020] . - pp 128 - 140[article]