Détail de l'auteur
Auteur Ting Mao |
Documents disponibles écrits par cet auteur



Unsupervised classification of multispectral images embedded with a segmentation of panchromatic images using localized clusters / Ting Mao in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
![]()
[article]
Titre : Unsupervised classification of multispectral images embedded with a segmentation of panchromatic images using localized clusters Type de document : Article/Communication Auteurs : Ting Mao, Auteur ; Wei Huang, Auteur Année de publication : 2019 Article en page(s) : pp 8732 - 8744 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme de fusion
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] segmentation multi-échelle
[Termes descripteurs IGN] superpixelRésumé : (auteur) There are many approaches to fuse panchromatic (PAN) and multispectral (MS) images for classification, mainly including sharpening-then-classification methods, classification-then-sharpening methods, and segmentation-then-classification methods. The generalized Chinese restaurant franchise (gCRF) is a segmentation-then-classification-like method to fuse very high resolution (VHR) PAN and MS images for classification, which has the limitation the same as that of the general segmentation-then-classification methods that segmentation errors will affect the subsequent classification. The problems of gCRF are that during the segmentation step, the spatial coherence in the image plane is deficient and the global clusters without spatial position information are used for segmentation, which may lead to undersegmented and disconnected regions in the segmentation results and decrease classification accuracy. In this paper, we propose an improved model, which overcomes the problems of the gCRF during the segmentation step, to increase the classification accuracy by the following two ways: 1) building the spatial coherence in the image plane by introducing neighborhood information of superpixels to construct the subimages and 2) using localized clusters with spatial location information instead of global clusters to measure the similarity between superpixels and segments. The experimental results show that the problems of undersegmentation and disconnected segments are both alleviated, resulting in better classification results in terms of the visual and quantitative aspects. Numéro de notice : A2019-597 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2922672 date de publication en ligne : 17/07/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2922672 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94589
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8732 - 8744[article]