Détail de l'auteur
Auteur Mengjun Kang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A trajectory restoration algorithm for low-sampling-rate floating car data and complex urban road networks / Bozhao Li in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
[article]
Titre : A trajectory restoration algorithm for low-sampling-rate floating car data and complex urban road networks Type de document : Article/Communication Auteurs : Bozhao Li, Auteur ; Zhongliang Cai, Auteur ; Mengjun Kang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 717 - 740 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] appariement de cartes
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taux d'échantillonnage
[Termes IGN] trafic routier
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] zone urbaineRésumé : (auteur) Low-sampling-rate floating car data (FCD) are more challenging than those with high-sampling-rate FCD for map matching (MM) algorithms. Some MM algorithms for low-sampling-rate FCD lack sufficient efficiency nor accuracy, especially related to complex urban road networks. This paper proposes a new method named the trajectory restoration algorithm, which is based on geometry MM algorithms to ensure efficiency and accuracy. The proposed algorithm adopts the modified A* shortest path algorithm to reduce the number of function calls and fully considers road network topology and historical matched points to improve its accuracy. We test the efficiency and accuracy of the trajectory restoration algorithm with FCD data for the complex urban road networks in Beijing. The results have strong continuity which greatly improves the utilization of FCD. We show that the proposed algorithm outperforms related MM methods in efficiency and accuracy and its robustness to restore trajectories of both high and low sampling rates in complex urban road networks. Numéro de notice : A2021-269 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2020.1825721 Date de publication en ligne : 20/10/2020 En ligne : https://doi.org/10.1080/13658816.2020.1825721 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97326
in International journal of geographical information science IJGIS > vol 35 n° 4 (April 2021) . - pp 717 - 740[article]A deep learning architecture for semantic address matching / Yue Lin in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
[article]
Titre : A deep learning architecture for semantic address matching Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Mengjun Kang, Auteur ; Yuyang Wu, Auteur Année de publication : 2020 Article en page(s) : pp 559 - 576 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] géocodage par adresse postale
[Termes IGN] gestion urbaine
[Termes IGN] inférence sémantique
[Termes IGN] représentation vectorielle
[Termes IGN] réseau neuronal profond
[Termes IGN] Shenzhen
[Termes IGN] similitude sémantique
[Termes IGN] traitement du langage naturelRésumé : (auteur) Address matching is a crucial step in geocoding, which plays an important role in urban planning and management. To date, the unprecedented development of location-based services has generated a large amount of unstructured address data. Traditional address matching methods mainly focus on the literal similarity of address records and are therefore not applicable to the unstructured address data. In this study, we introduce an address matching method based on deep learning to identify the semantic similarity between address records. First, we train the word2vec model to transform the address records into their corresponding vector representations. Next, we apply the enhanced sequential inference model (ESIM), a deep text-matching model, to make local and global inferences to determine if two addresses match. To evaluate the accuracy of the proposed method, we fine-tune the model with real-world address data from the Shenzhen Address Database and compare the outputs with those of several popular address matching methods. The results indicate that the proposed method achieves a higher matching accuracy for unstructured address records, with its precision, recall, and F1 score (i.e., the harmonic mean of precision and recall) reaching 0.97 on the test set. Numéro de notice : A2020-106 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1681431 Date de publication en ligne : 24/10/2019 En ligne : https://doi.org/10.1080/13658816.2019.1681431 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94702
in International journal of geographical information science IJGIS > vol 34 n° 3 (March 2020) . - pp 559 - 576[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020031 RAB Revue Centre de documentation En réserve L003 Disponible