Détail de l'auteur
Auteur Biswajit Nath |
Documents disponibles écrits par cet auteur



Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh Type de document : Article/Communication Auteurs : Mohammad Emran Hasan, Auteur ; Biswajit Nath, Auteur ; A.H.M. Raihan Sarker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] Bangladesh
[Termes descripteurs IGN] classification par maximum de vraisemblance
[Termes descripteurs IGN] couvert forestier
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] dégradation de l'environnement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] gestion forestière durable
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] réserve forestière
[Termes descripteurs IGN] réserve naturelle
[Termes descripteurs IGN] santé des forêts
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Overdependence on and exploitation of forest resources have significantly transformed the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into a great degradation status. By observing these, a most pressing concern is how much degradation occurred in the past, and what will be the scenarios in the future if they continue? To confirm the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between 1989 and 2019 as existing data and primary data. Moreover, a geographic information system model was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989 to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC) technique was employed to classify the historical images with five different LC types, which were further considered for future projection (2029) including trends based on 2019 simulation results from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest degradation in the past (1989–2019) of 4773.02 ha yr−1, considered as great forest degradation (GFD) and showed a declining status when moving with the projection (2019–2029) of 1508.53 ha yr−1 and overall there was a decline of 3956.90 ha yr−1 in the 1989–2029 time period. Moreover, the study also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest was enhanced, which will continue in the future even to 2029 if no effective management is carried out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation mapping and assessment, the study suggests a few policies that require the immediate attention of forest policy-makers to implement them immediately and ensure sustainable development in the SRF. Numéro de notice : A2020-752 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091016 date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.3390/f11091016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96432
in Forests > vol 11 n° 9 (September 2020) . - N° 1016[article]Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process / Biswajit Nath in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)
![]()
[article]
Titre : Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process Type de document : Article/Communication Auteurs : Biswajit Nath, Auteur ; Zhihua Wang, Auteur ; Yong Ge, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aménagement paysager
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] chaîne de Markov
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] faille géologique
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] risque environnemental
[Termes descripteurs IGN] risque naturel
[Termes descripteurs IGN] séisme
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Land use and land cover change (LULCC) has directly played an important role in the observed climate change. In this paper, we considered Dujiangyan City and its environs (DCEN) to study the future scenario in the years 2025, 2030, and 2040 based on the 2018 simulation results from 2007 and 2018 LULC maps. This study evaluates the spatial and temporal variations of future LULCC, including the future potential landscape risk (FPLR) area of the 2008 great (8.0 Mw) earthquake of south-west China. The Cellular automata–Markov chain (CA-Markov) model and multicriteria based analytical hierarchy process (MC-AHP) approach have been considered using the integration of remote sensing and GIS techniques. The analysis shows future LULC scenario in the years 2025, 2030, and 2040 along with the FPLR pattern. Based on the results of the future LULCC and FPLR scenarios, we have provided suggestions for the development in the close proximity of the fault lines for the future strong magnitude earthquakes. Our results suggest a better and safe planning approach in the Belt and Road Corridor (BRC) of China to control future Silk-Road Disaster, which will also be useful to urban planners for urban development in a safe and sustainable manner. Numéro de notice : A2020-112 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9020134 date de publication en ligne : 24/02/2020 En ligne : https://doi.org/10.3390/ijgi9020134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94717
in ISPRS International journal of geo-information > vol 9 n° 2 (February 2020)[article]