Détail de l'auteur
Auteur Peng Wang |
Documents disponibles écrits par cet auteur (2)



Multiresolution analysis pansharpening based on variation factor for multispectral and panchromatic images from different times / Peng Wang in IEEE Transactions on geoscience and remote sensing, vol 61 n° 3 (March 2023)
![]()
[article]
Titre : Multiresolution analysis pansharpening based on variation factor for multispectral and panchromatic images from different times Type de document : Article/Communication Auteurs : Peng Wang, Auteur ; Hongyu Yao, Auteur ; Bo Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5401217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] données multitemporelles
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Most pansharpening methods refer to the fusion of the original low-resolution multispectral (MS) and high-resolution panchromatic (PAN) images acquired simultaneously over the same area. Due to its good robustness, multiresolution analysis (MRA) has become one of the important categories of pansharpening methods. However, when only MS and PAN images acquired at different times can be provided, the fusion results from current MRA methods are often not ideal due to the failure to effectively analyze multitemporal misalignments between MS and PAN images from different times. To solve this issue, MRA pansharpening based on variation factor for MS and PAN images from different times is proposed. The MRA pansharpening based on dual-scale regression model is first established, and the variation factor is then introduced to effectively analyze the multitemporal misalignments by using the alternating direction method of multipliers (ADMM), yielding the final fusion results. Experiments with synthetic and real datasets show that the proposed method exhibits significant performance improvement compared to the traditional pansharpening methods, as well as the state-of-the-art MRA methods. Visual comparisons demonstrate that the variation factor introduces encouraging improvements in the compensation of multitemporal misalignments in ground objects and advances pansharpening applications for MS and PAN images acquired at different times. Numéro de notice : A2023-184 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3252001 En ligne : https://doi.org/10.1109/TGRS.2023.3252001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102956
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 3 (March 2023) . - n° 5401217[article]Hierarchical classification of pole‐like objects in mobile laser scanning point clouds / Rufei Liu in Photogrammetric record, vol 35 n° 169 (March 2020)
![]()
[article]
Titre : Hierarchical classification of pole‐like objects in mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Rufei Liu, Auteur ; Peng Wang, Auteur ; Zhaojin Yan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 81 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de la valeur
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] lidar mobile
[Termes IGN] milieu urbain
[Termes IGN] semis de points
[Termes IGN] valeur propreRésumé : (Auteur) For the classification of pole‐like objects (trees, lamp posts, traffic lights and traffic signs) in mobile laser scanning (MLS) point clouds, a hierarchical classification method is proposed. The method consists of three major steps. (1) The objects’ cylindrical column sections are detected based on the characteristics of arc‐like points using RANSAC after denoising. (2) These detected objects are roughly classified into trees and man‐made poles based on the azimuthal coverage of point clouds above the cylindrical column. (3) Eigenvalue analysis and the principal direction of the upper pole projections are used to differentiate lamp posts, traffic lights and traffic signs. Experimental analysis shows that the method can effectively identify different types of pole‐like objects. Numéro de notice : A2020-133 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12307 Date de publication en ligne : 10/01/2020 En ligne : https://doi.org/10.1111/phor.12307 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94819
in Photogrammetric record > vol 35 n° 169 (March 2020) . - pp 81 - 107[article]