Détail de l'auteur
Auteur Peng Jia |
Documents disponibles écrits par cet auteur (2)



Exploring fuzzy local spatial information algorithms for remote sensing image classification / Anjali Madhu in Remote sensing, vol 13 n° 20 (October-2 2021)
![]()
[article]
Titre : Exploring fuzzy local spatial information algorithms for remote sensing image classification Type de document : Article/Communication Auteurs : Anjali Madhu, Auteur ; Anil Kumar, Auteur ; Peng Jia, Auteur Année de publication : 2021 Article en page(s) : n° 4163 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification dirigée
[Termes IGN] classification floue
[Termes IGN] classification pixellaire
[Termes IGN] distance euclidienne
[Termes IGN] erreur moyenne quadratique
[Termes IGN] Inde
[Termes IGN] matrice d'erreur
[Termes IGN] occupation du sol
[Termes IGN] théorie des possibilitésRésumé : (auteur) Fuzzy c-means (FCM) and possibilistic c-means (PCM) are two commonly used fuzzy clustering algorithms for extracting land use land cover (LULC) information from satellite images. However, these algorithms use only spectral or grey-level information of pixels for clustering and ignore their spatial correlation. Different variants of the FCM algorithm have emerged recently that utilize local spatial information in addition to spectral information for clustering. Such algorithms are seen to generate clustering outputs that are more enhanced than the classical spectral-based FCM algorithm. Nonetheless, the scope of integrating spatial contextual information with the conventional PCM algorithm, which has several advantages over the FCM algorithm for supervised classification, has not been explored much. This study proposed integrating local spatial information with the PCM algorithm using simpler but proven approaches from available FCM-based local spatial information algorithms. The three new PCM-based local spatial information algorithms: Possibilistic c-means with spatial constraints (PCM-S), possibilistic local information c-means (PLICM), and adaptive possibilistic local information c-means (ADPLICM) algorithms, were developed corresponding to the available fuzzy c-means with spatial constraints (FCM-S), fuzzy local information c-means (FLICM), and adaptive fuzzy local information c-means (ADFLICM) algorithms. Experiments were conducted to analyze and compare the FCM and PCM classifier variants for supervised LULC classifications in soft (fuzzy) mode. The quantitative assessment of the soft classification results from fuzzy error matrix (FERM) and root mean square error (RMSE) suggested that the new PCM-based local spatial information classifiers produced higher accuracies than the PCM, FCM, or its local spatial variants, in the presence of untrained classes and noise. The promising results from PCM-based local spatial information classifiers suggest that the PCM algorithm, which is known to be naturally robust to noise, when integrated with local spatial information, has the potential to result in more efficient classifiers capable of better handling ambiguities caused by spectral confusions in landscapes. Numéro de notice : A2021-806 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13204163 Date de publication en ligne : 18/10/2021 En ligne : https://doi.org/10.3390/rs13204163 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98864
in Remote sensing > vol 13 n° 20 (October-2 2021) . - n° 4163[article]Multiscale Intensity Propagation to Remove Multiplicative Stripe Noise From Remote Sensing Images / Hao Cui in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : Multiscale Intensity Propagation to Remove Multiplicative Stripe Noise From Remote Sensing Images Type de document : Article/Communication Auteurs : Hao Cui, Auteur ; Peng Jia, Auteur ; Guo Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2308 - 2323 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des correspondances
[Termes IGN] bande spectrale
[Termes IGN] capteur à balayage
[Termes IGN] correction d'image
[Termes IGN] dégradation d'image
[Termes IGN] délignage
[Termes IGN] filtrage du bruit
[Termes IGN] filtrage du rayonnement
[Termes IGN] image hyperspectrale
[Termes IGN] intensité lumineuse
[Termes IGN] itération
[Termes IGN] méthode robuste
[Termes IGN] pollution acoustiqueRésumé : (auteur) Sensor instability, dark currents, and other factors often cause stripe noise corruption in hyperspectral remote sensing images and severely limit their application in practical purposes. Previous studies have proposed numerous destriping algorithms that have yielded impressive results. Although most destriping algorithms are based on the premise of additive noise, a few studies have focused directly on multiplicative stripe noise. This article fully analyzes the characteristics of the stripe noise of OHS-01 images and proposes a multiplicative stripe noise removal method. Specifically, stripe noise is tackled by performing radiometric normalization of different columns in the image. First, the relative gain coefficients of adjacent columns are separated based on prior knowledge. Second, the local relative intensity correspondence of the image columns are established by means of intensity propagation, intensity connection, and so on. Finally, the above-mentioned process is iterated in multiscale space, and the accumulated gain correction coefficient maps were used to correct the radiation of the original image. The results of extensive experiments on simulated and real remote sensing image data demonstrate that the proposed method can, in most cases, yield desirable results. In certain cases, the results are even better, visually, and quantitatively, than those obtained using classical algorithms. Moreover, the proposed method has high robustness and efficiency. Thus, it can conform to the requirements of engineering applications. Numéro de notice : A2020-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947599 Date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947599 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94861
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2308 - 2323[article]