Détail de l'auteur
Auteur Pengxiang Zhao |
Documents disponibles écrits par cet auteur (2)



A GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods / Pengxiang Zhao in Remote sensing, vol 14 n° 1 (January-1 2022)
![]()
[article]
Titre : A GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods Type de document : Article/Communication Auteurs : Pengxiang Zhao, Auteur ; Zohreh Masoumi, Auteur ; Maryam Kalantari, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] effondrement de terrain
[Termes IGN] Iran
[Termes IGN] modèle numérique de surface
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] risque naturel
[Termes IGN] système d'information géographiqueRésumé : (auteur) Landslides often cause significant casualties and economic losses, and therefore landslide susceptibility mapping (LSM) has become increasingly urgent and important. The potential of deep learning (DL) like convolutional neural networks (CNN) based on landslide causative factors has not been fully explored yet. The main target of this study is the investigation of a GIS-based LSM in Zanjan, Iran and to explore the most important causative factor of landslides in the case study area. Different machine learning (ML) methods have been employed and compared to select the best results in the case study area. The CNN is compared with four ML algorithms, including random forest (RF), artificial neural network (ANN), support vector machine (SVM), and logistic regression (LR). To do so, sixteen landslide causative factors have been extracted and their related spatial layers have been prepared. Then, the algorithms were trained with related landslide and non-landslide points. The results illustrate that the five ML algorithms performed suitably (precision = 82.43–85.6%, AUC = 0.934–0.967). The RF algorithm achieves the best result, while the CNN, SVM, the ANN, and the LR have the best results after RF, respectively, in this case study. Moreover, variable importance analysis results indicate that slope and topographic curvature contribute more to the prediction. The results would be beneficial to planning strategies for landslide risk management. Numéro de notice : A2022-056 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/rs14010211 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.3390/rs14010211 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99459
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 211[article]An empirical study on the intra-urban goods movement patterns using logistics big data / Pengxiang Zhao in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
![]()
[article]
Titre : An empirical study on the intra-urban goods movement patterns using logistics big data Type de document : Article/Communication Auteurs : Pengxiang Zhao, Auteur ; Wenzhong Shi, Auteur ; Tao Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1089 - 1116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] analyse systémique
[Termes IGN] fret
[Termes IGN] gestion urbaine
[Termes IGN] Hong-Kong
[Termes IGN] interaction spatiale
[Termes IGN] logistique
[Termes IGN] objet mobile
[Termes IGN] origine - destination
[Termes IGN] plan de déplacement urbain
[Termes IGN] réseau de transport
[Termes IGN] série temporelle
[Termes IGN] trafic urbainRésumé : (auteur) Movement patterns of intra-urban goods/things and the ways they differ from human mobility and traffic flow patterns have seldom been explored due to data access and methodological limitations, especially from systemic and long timescale perspectives. However, urban logistics big data are increasingly available, enabling unprecedented spatial and temporal resolutions to this issue. This research proposes an analytical framework for exploring intra-urban goods movement patterns by integrating spatial analysis, network analysis and spatial interaction analysis. Using daily urban logistics big data (over 10 million orders) provided by the largest online logistics company in Hong Kong (GoGoVan) from 2014 to 2016, we analyzed two spatial characteristics (displacement and direction) of urban goods movement. Results showed that the distribution of goods displaceFower law or exponential distribution of human mobility trends. The origin–destination flows of goods were used to build a spatially embedded network, revealing that Hong Kong became increasingly connected through intra-urban freight movement. Finally, spatial interaction characteristics were revealed using a fitting gravity model. Distance lacked substantial influence on the spatial interaction of goods movement. These findings have policy implications to intra-urban logistics and urban transport planning. Numéro de notice : A2020-268 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1520236 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1080/13658816.2018.1520236 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95039
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1089 - 1116[article]