Détail de l'auteur
Auteur Lei Shi |
Documents disponibles écrits par cet auteur (2)



A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images / Heng Lyu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images Type de document : Article/Communication Auteurs : Heng Lyu, Auteur ; Zhiqian Yang, Auteur ; Lei Shi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6512 - 6523 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] changement climatique
[Termes IGN] Chine
[Termes IGN] chlorophylle
[Termes IGN] corrélation
[Termes IGN] image Sentinel-OLCI
[Termes IGN] lac
[Termes IGN] plancton
[Termes IGN] réflectance
[Termes IGN] série temporelle
[Termes IGN] teneur en carboneRésumé : (auteur) Phytoplankton carbon, an important biogeochemical and ecological parameter, plays a critical role in the carbon cycle and in global warming reduction. Estimation of phytoplankton carbon in inland waters on a large scale using remote sensing is useful for understanding, evaluating, and monitoring the carbon dynamics, and, in particular, for determining the spatial–temporal variation of primary production in inland waters. In a correlation analysis of the phytoplankton carbon concentration and water components, the result revealed no significant correlation between the chlorophyll-a concentration and phytoplankton carbon concentration in inland waters. However, the absorption peak height of particles at 675 nm, which is defined as the absorption at 675 nm subtracted by that at 660 nm, was found to be closely correlated with the phytoplankton carbon concentration. Thus, the absorption peak height of particles at 675 nm could be used as an indicator of the phytoplankton carbon concentration. A semianalytical method based on the remote-sensing reflectance in Sentinel-3 Ocean and Land Color Instrument (OLCI) bands 8, 9, and 17 was developed to derive the absorption peak of particles at a wavelength of 675 nm. Finally, an algorithm for estimating the phytoplankton carbon concentration in inland waters using OLCI bands 8, 9, and 17 was constructed. From 2013 to 2018, eight field campaigns were conducted in inland lakes in different seasons, and the optical properties, optically active water components, and phytoplankton carbon concentrations were obtained. An assessment of its accuracy using an independent data set demonstrated that the algorithm performance is acceptable (mean absolute percentage error, 48.6%, and root mean square error, 0.36 mg/L). As a demonstration, the algorithm was successfully applied to map the phytoplankton carbon concentration in Taihu Lake and Chaohu Lake, China, using OLCI images acquired on December 5, 2017, and August 5, 2018 and December 8, 2... Numéro de notice : A2020-531 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977080 Date de publication en ligne : 12/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977080 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95714
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6512 - 6523[article]Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable Type de document : Article/Communication Auteurs : Lei Shi, Auteur ; Pingxiang Li, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4454 - 4471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit (théorie du signal)
[Termes IGN] coin réflecteur
[Termes IGN] dégradation du signal
[Termes IGN] données polarimétriques
[Termes IGN] étalonnage
[Termes IGN] extraction automatique
[Termes IGN] image radar moirée
[Termes IGN] interruption du signal
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation croisée
[Termes IGN] rétrodiffusion de BraggRésumé : (auteur) In this article, we propose a polarimetric calibration (PolCal) algorithm to estimate the system crosstalk, cross-polarization (x-pol), and co-polarization (co-pol) channel imbalance (CI) when ground corner reflectors (CRs) are unavailable. The current PolCal process requires at least one trihedral CR to determine the co-pol CI. However, the deployment of ground CRs is costly and may even be impossible in some areas. To calibrate a polarimetric image without CRs, our proposed method automatically extracts the volume-dominated and Bragg-like pixels as a reference to estimate the crosstalk, x-pol, and co-pol CI values. Then, a first-order polynomial model is exploited to fit the co-pol CI to further improve calibration accuracy. In the experimental section, we demonstrate the effectiveness of our proposed method with data from two of China’s newly developed very high-resolution systems. The experiments confirmed that the proposed workflow can be considered as a feasible calibration scheme when the ground deployment of CRs is impossible, and it is also an effective analysis tool for the assessment of calibrated products. Numéro de notice : A2020-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2964732 Date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2964732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95109
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4454 - 4471[article]