Détail de l'auteur
Auteur Mingguo Ma |
Documents disponibles écrits par cet auteur



Estimating and interpreting fine-scale gridded population using random forest regression and multisource data / Yun Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
![]()
[article]
Titre : Estimating and interpreting fine-scale gridded population using random forest regression and multisource data Type de document : Article/Communication Auteurs : Yun Zhou, Auteur ; Mingguo Ma, Auteur ; Kaifang Shi, Auteur ; Zhenyu Peng, Auteur Année de publication : 2020 Article en page(s) : 18 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] catastrophe naturelle
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] données maillées
[Termes descripteurs IGN] données multisources
[Termes descripteurs IGN] migration humaine
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] population urbaine
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] secours d'urgence
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Gridded population results at a fine resolution are important for optimizing the allocation of resources and researching population migration. For example, the data are crucial for epidemic control and natural disaster relief. In this study, the random forest model was applied to multisource data to estimate the population distribution in impervious areas at a 30 m spatial resolution in Chongqing, Southwest China. The community population data from the Chinese government were used to validate the estimation accuracy. Compared with the other regression techniques, the random forest regression method produced more accurate results (R2 = 0.7469, RMSE = 2785.04 and p Numéro de notice : A2020-308 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060369 date de publication en ligne : 03/06/2020 En ligne : https://doi.org/10.3390/ijgi9060369 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95155
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 18 p.[article]