Détail de l'auteur
Auteur Saro Lee |
Documents disponibles écrits par cet auteur



Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea / Sunmin Lee in Geocarto international, vol 35 n° 15 ([01/11/2020])
![]()
[article]
Titre : Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea Type de document : Article/Communication Auteurs : Sunmin Lee, Auteur ; Moung-Jin Lee, Auteur ; Hyung-Sup Jung, Auteur ; Saro Lee, Auteur Année de publication : 2020 Article en page(s) : pp 1665 - 1679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] carte topographique
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] catastrophe naturelle
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] réseau bayesien
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) In recent years, machine learning techniques have been increasingly applied to the assessment of various natural disasters, including landslides and floods. Machine learning techniques can be used to make predictions based on the relationships among events and their influencing factors. In this study, a machine learning approaches were applied based on landslide location data in a geographic information system environment. Topographic maps were used to determine the topographical factors. Additional soil and forest parameters were examined using information obtained from soil and forest maps. A total of 17 factors affecting landslide occurrence were selected and a spatial database was constructed. Naïve Bayes and Bayesian network models were applied to predict landslides based on selected risk factors. The two models showed accuracies of 78.3 and 79.8%, respectively. The results of this study provide a useful foundation for effective strategies to prevent and manage landslides in urban areas. Numéro de notice : A2020-658 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585482 date de publication en ligne : 16/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585482 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96130
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1665 - 1679[article]Machine learning techniques applied to geoscience information system and remote sensing / Saro Lee (2019)
![]()
Titre : Machine learning techniques applied to geoscience information system and remote sensing Type de document : Monographie Auteurs : Saro Lee, Editeur scientifique ; Hyung-Sup Jung, Editeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2019 Importance : 438 p. ISBN/ISSN/EAN : ISBN 978-3-03921-215-6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] géosciences
[Termes descripteurs IGN] réseau neuronal convolutif
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] télédétection
[Termes descripteurs IGN] traitement de données localiséesRésumé : (éditeur) As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing. Numéro de notice : 25831 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Recueil / ouvrage collectif En ligne : https://www.mdpi.com/books/pdfview/book/1533 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95158