Détail de l'auteur
Auteur Di Wang |
Documents disponibles écrits par cet auteur



Unsupervised semantic and instance segmentation of forest point clouds / Di Wang in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
![]()
[article]
Titre : Unsupervised semantic and instance segmentation of forest point clouds Type de document : Article/Communication Auteurs : Di Wang, Auteur Année de publication : 2020 Article en page(s) : pp 86 - 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] indice foliaire
[Termes descripteurs IGN] interprétation automatique
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] télémètre laser terrestreRésumé : (auteur) Terrestrial Laser Scanning (TLS) has been increasingly used in forestry applications including forest inventory and plant ecology. Tree biophysical properties such as leaf area distributions and wood volumes can be accurately estimated from TLS point clouds. In these applications, a prerequisite is to properly understand the information content of large scale point clouds (i.e., semantic labelling of point clouds), so that tree-scale attributes can be retrieved. Currently, this requirement is undergoing laborious and time consuming manual works. In this work, we jointly address the problems of semantic and instance segmentation of forest point clouds. Specifically, we propose an unsupervised pipeline based on a structure called superpoint graph, to simultaneously perform two tasks: single tree isolation and leaf-wood classification. The proposed method is free from restricted assumptions of forest types. Validation using simulated data resulted in a mean Intersection over Union (mIoU) of 0.81 for single tree isolation, and an overall accuracy of 87.7% for leaf-wood classification. The single tree isolation led to a relative root mean square error (RMSE%) of 2.9% and 19.8% for tree height and crown diameter estimations, respectively. Comparisons with existing methods on other benchmark datasets showed state-of-the-art results of our method on both single tree isolation and leaf-wood classification tasks. We provide the entire framework as an open-source tool with an end-user interface. This study closes the gap for using TLS point clouds to quantify tree-scale properties in large areas, where automatic interpretation of the information content of TLS point clouds remains a crucial challenge. Numéro de notice : A2020-347 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.020 date de publication en ligne : 28/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.020 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95228
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 86 - 97[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 SL Revue Centre de documentation Revues en salle Disponible 081-2020073 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt