Détail de l'auteur
Auteur Jimin Wang |
Documents disponibles écrits par cet auteur



NeuroTPR: A neuro‐net toponym recognition model for extracting locations from social media messages / Jimin Wang in Transactions in GIS, Vol 24 n° 3 (June 2020)
![]()
[article]
Titre : NeuroTPR: A neuro‐net toponym recognition model for extracting locations from social media messages Type de document : Article/Communication Auteurs : Jimin Wang, Auteur ; Yingjie Hu, Auteur ; Kenneth Joseph, Auteur Année de publication : 2020 Article en page(s) : pp 719 - 735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] catastrophe naturelle
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] flux de travaux
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] précision sémantique
[Termes descripteurs IGN] reconnaissance de noms
[Termes descripteurs IGN] réseau neuronal récurrent
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] toponymeRésumé : (auteur) Social media messages, such as tweets, are frequently used by people during natural disasters to share real‐time information and to report incidents. Within these messages, geographic locations are often described. Accurate recognition and geolocation of these locations are critical for reaching those in need. This article focuses on the first part of this process, namely recognizing locations from social media messages. While general named entity recognition tools are often used to recognize locations, their performance is limited due to the various language irregularities associated with social media text, such as informal sentence structures, inconsistent letter cases, name abbreviations, and misspellings. We present NeuroTPR, which is a Neuro‐net ToPonym Recognition model designed specifically with these linguistic irregularities in mind. Our approach extends a general bidirectional recurrent neural network model with a number of features designed to address the task of location recognition in social media messages. We also propose an automatic workflow for generating annotated data sets from Wikipedia articles for training toponym recognition models. We demonstrate NeuroTPR by applying it to three test data sets, including a Twitter data set from Hurricane Harvey, and comparing its performance with those of six baseline models. Numéro de notice : A2020-445 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12627 date de publication en ligne : 14/05/2020 En ligne : https://doi.org/10.1111/tgis.12627 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95508
in Transactions in GIS > Vol 24 n° 3 (June 2020) . - pp 719 - 735[article]