Détail de l'auteur
Auteur Emon Kumar Dey |
Documents disponibles écrits par cet auteur (1)



Outlier detection and robust plane fitting for building roof extraction from LiDAR data / Emon Kumar Dey in International Journal of Remote Sensing IJRS, vol 41 n° 16 (01-10 May 2020)
![]()
[article]
Titre : Outlier detection and robust plane fitting for building roof extraction from LiDAR data Type de document : Article/Communication Auteurs : Emon Kumar Dey, Auteur ; Mohammad Awrangjeb, Auteur ; Bela Stantic, Auteur Année de publication : 2020 Article en page(s) : pp 6325 - 6354 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] valeur aberranteRésumé : (auteur) Individual roof plane extraction from Light Detection and Ranging (LiDAR) point-cloud data is a complex and difficult task because of unknown semantic characteristics and inharmonious behaviour of input data. Most of the existing state-of-the-art methods fail to detect small true roof planes with exact boundaries due to outliers, occlusions, complex building structures, and other inconsistent nature of LiDAR data. In this paper, we have presented an improved building detection and roof plane extraction method, which is less sensitive to the outliers and unlikely to generate spurious planes. For this, a robust outlier detection algorithm has been proposed in this paper along with a robust plane-fitting algorithm based on M-estimator SAmple Consensus (MSAC) for detecting individual roof planes. Using two benchmark datasets (Australian and International Society for Photogrammetry and Remote Sensing benchmark) with different numbers of buildings and sizes, trees and point densities, we have evaluated the proposed method. Experimental results show that the method removes outliers and vegetation almost accurately and offers a high success rate in terms of completeness and correctness (between 80% and 100% per-object) for both roof plane extraction and building detection. In most of the cases, the proposed method shows above 90% correctness. Numéro de notice : A2020-454 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1737339 Date de publication en ligne : 09/06/2020 En ligne : https://doi.org/10.1080/01431161.2020.1737339 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95543
in International Journal of Remote Sensing IJRS > vol 41 n° 16 (01-10 May 2020) . - pp 6325 - 6354[article]