Détail de l'auteur
Auteur Luis Carrasco |
Documents disponibles écrits par cet auteur (2)



Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
![]()
[article]
Titre : Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine Type de document : Article/Communication Auteurs : Luis Carrasco, Auteur ; Go Fujita, Auteur ; Kensuke Kito, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 277 - 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] cartographie historique
[Termes IGN] détection de changement
[Termes IGN] Google Earth
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] Japon
[Termes IGN] phénologie
[Termes IGN] photographie aérienne
[Termes IGN] réflectance de surface
[Termes IGN] rizière
[Termes IGN] signature spectraleRésumé : (auteur) Mapping the expansion or reduction of rice fields is fundamental for food and water security, greenhouse gas emission accounting, and environmental management. The historical mapping of rice fields with satellite images is challenging because of the limited availability of remote sensing and training data from past decades. The use of phenology-based algorithms has been proposed for mapping rice fields because they can take advantage of rice fields’ characteristic spectral signature during the transplanting phase and do not need training data. However, in order to employ phenology-based algorithms effectively for the historical rice mapping of large areas, we need to incorporate automatized methods able to deal with non-usable data (e.g., cloud cover) and with spatial inconsistencies in the number of available images for each pixel. Here we propose the combination of a pixel-based, phenological algorithm with the temporal aggregation of all available Landsat images to produce national level historical maps of rice fields in Japan from the 1980s onwards. We used temporally aggregated metrics (median, percentiles, etc.), derived from spectral indices of a large number of images within the Google Earth Engine, to minimize the issue of inconsistent image availability and reduce the effects of outliers in phenology-based algorithms. We produced seven rice field maps, for the periods 1985–89, 1990–94, 1995–99, 2000–04, 2005–09, 2010–14, and 2015–19. The overall map accuracies ranged from 83% to 95% when validated with visually interpreted aerial photography. We detected a 23% decrease in the area of rice fields at a country level, although the changes varied greatly among prefectures. Here we present the first freely available historical rice field maps of Japan from the 1980s onwards, together with the source code, and a web application that enables the exploration of the maps and data relating to the derived rice field area changes. The application of temporal aggregation is promising for dealing with the gap-filling of large amounts of satellite data, reducing the issue of data outliers and providing an effective use of the historical Landsat archive for phenology-based crop detection algorithms. Our maps could greatly help researchers, conservationists and policymakers studying the drivers and consequences of rice field changes, and our methods could be extrapolated to map rice fields at large scales in other regions of the world. Numéro de notice : A2022-665 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.07.018 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.07.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101527
in ISPRS Journal of photogrammetry and remote sensing > vol 191 (September 2022) . - pp 277 - 289[article]Combining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine / Thuan Sarzynski in Remote sensing, vol 12 n° 7 (April 2020)
![]()
[article]
Titre : Combining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine Type de document : Article/Communication Auteurs : Thuan Sarzynski, Auteur ; Xingli Giam, Auteur ; Luis Carrasco, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Elaeis guineensis
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat
[Termes IGN] image radar moirée
[Termes IGN] occupation du sol
[Termes IGN] Sumatra
[Termes IGN] surveillance agricole
[Termes IGN] utilisation du solRésumé : (auteur) Monitoring the expansion of commodity crops in the tropics is crucial to safeguard forests for biodiversity and ecosystem services. Oil palm (Elaeis guineensis) is one such crop that is a major driver of deforestation in Southeast Asia. We evaluated the use of a semi-automated approach with random forest as a classifier and combined optical and radar datasets to classify oil palm land-cover in 2015 in Sumatra, Indonesia, using Google Earth Engine. We compared our map with two existing remotely-sensed oil palm land-cover products that utilized visual and semi-automated approaches for the same year. We evaluated the accuracy of oil palm land-cover classification from optical (Landsat), radar (synthetic aperture radar (SAR)), and combined optical and radar satellite imagery (Combined). Combining Landsat and SAR data resulted in the highest overall classification accuracy (84%) and highest producer’s and user’s accuracy for oil palm classification (84% and 90%, respectively). The amount of oil palm land-cover in our Combined map was closer to official government statistics than the two existing land-cover products that used visual interpretation techniques. Our analysis of the extents of disagreement in oil palm land-cover indicated that our map had comparable accuracy to one of them and higher accuracy than the other. Our results demonstrate that a combination of optical and radar data outperforms the use of optical-only or radar-only datasets for oil palm classification and that our technique of preprocessing and classifying combined optical and radar data in the Google Earth Engine can be applied to accurately monitor oil-palm land-cover in Southeast Asia. Numéro de notice : A2020-455 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12071220 Date de publication en ligne : 10/04/2020 En ligne : https://doi.org/10.3390/rs12071220 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95554
in Remote sensing > vol 12 n° 7 (April 2020)[article]