Détail de l'auteur
Auteur Abdul‐Lateef Balogun |
Documents disponibles écrits par cet auteur (2)



The influence of urban form on the spatiotemporal variations in land surface temperature in an arid coastal city / Irshad Mir Parvez in Geocarto international, vol 36 n° 6 ([01/04/2021])
![]()
[article]
Titre : The influence of urban form on the spatiotemporal variations in land surface temperature in an arid coastal city Type de document : Article/Communication Auteurs : Irshad Mir Parvez, Auteur ; Yusuf A. Aina, Auteur ; Abdul‐Lateef Balogun, Auteur Année de publication : 2021 Article en page(s) : pp 640 - 659 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de données
[Termes IGN] analyse de variance
[Termes IGN] Arabie Saoudite
[Termes IGN] données spatiotemporelles
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat
[Termes IGN] littoral
[Termes IGN] morphologie urbaine
[Termes IGN] occupation du sol
[Termes IGN] température au sol
[Termes IGN] ville durable
[Termes IGN] zone arideRésumé : (Auteur) This article explores using satellite images to monitor spatiotemporal variations in temperature related to urban form. Land surface temperatures (LST) were estimated from Landsat images (1986–2016) and the land cover and urban form LST were extracted by using samples representing different urban forms/cover types. A transect of 20 km was taken across the city to derive the LST across the different land cover types. Urban heat island index and statistical analysis were carried out to understand the influence of urban form and cover on changes in surface temperature. The results are compared with temperature regimes of an industrial city (Yanbu) to depict differences in the two cities. The analysis of variance (ANOVA) shows variations, at 0.01 level of significance, in the LST values of the city centre, high-rise, low-density, vegetation, desert and industrial land-use types. The outcome of the study is valuable for decision-makers in achieving sustainable urban development. Numéro de notice : A2021-291 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622598 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1622598 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97337
in Geocarto international > vol 36 n° 6 [01/04/2021] . - pp 640 - 659[article]A novel deep learning instance segmentation model for automated marine oil spill detection / Shamsudeen Temitope Yekeen in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
![]()
[article]
Titre : A novel deep learning instance segmentation model for automated marine oil spill detection Type de document : Article/Communication Auteurs : Shamsudeen Temitope Yekeen, Auteur ; Abdul‐Lateef Balogun, Auteur ; Khamaruzaman B. Wan Yusof, Auteur Année de publication : 2020 Article en page(s) : pp 190 - 200 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] hydrocarbure
[Termes IGN] image radar moirée
[Termes IGN] marée noire
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateur
[Termes IGN] zone d'intérêtRésumé : (auteur) The visual similarity of oil slick and other elements, known as look-alike, affects the reliability of synthetic aperture radar (SAR) images for marine oil spill detection. So far, detection and discrimination of oil spill and look-alike are still limited to the use of traditional machine learning algorithms and semantic segmentation deep learning models with limited accuracy. Thus, this study developed a novel deep learning oil spill detection model using computer vision instance segmentation Mask-Region-based Convolutional Neural Network (Mask R-CNN) model. The model training was conducted using transfer learning on the ResNet 101 on COCO as backbone in combination with Feature Pyramid Network (FPN) architecture for feature extraction at 30 epochs with 0.001 learning rate. Testing of the model was conducted using the least training and validation loss value on the withheld testing images. The model’s performance was evaluated using precision, recall, specificity, IoU, F1-measure and overall accuracy values. Ship detection and segmentation had the highest performance with overall accuracy of 98.3%. The model equally showed a higher accuracy for oil spill and look-alike detection and segmentation although oil spill detection outperformed look-alike with overall accuracy values of 96.6% and 91.0% respectively. The study concluded that the deep learning instance segmentation model performs better than conventional machine learning models and deep learning semantic segmentation models in detection and segmentation. Numéro de notice : A2020-548 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.07.011 Date de publication en ligne : 28/07/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.07.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95774
in ISPRS Journal of photogrammetry and remote sensing > vol 167 (September 2020) . - pp 190 - 200[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020091 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt