Détail de l'auteur
Auteur Rajendra Prasad |
Documents disponibles écrits par cet auteur (3)



Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture / Pashrant K. Srivastava in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
![]()
[article]
Titre : Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture Type de document : Article/Communication Auteurs : Pashrant K. Srivastava, Auteur ; George P. Petropoulos, Auteur ; Rajendra Prasad, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 507 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme génétique
[Termes IGN] Angleterre
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] humidité du sol
[Termes IGN] image SMOS
[Termes IGN] régression des moindres carrés partielsRésumé : (auteur) Soil Moisture Deficit (SMD) is a key indicator of soil water content changes and is valuable to a variety of applications, such as weather and climate, natural disasters, agricultural water management, etc. Soil Moisture and Ocean Salinity (SMOS) is a dedicated mission focused on soil moisture retrieval and can be utilized for SMD estimation. In this study, the use of soil moisture derived from SMOS has been provided for the estimation of SMD at a catchment scale. Several approaches for the estimation of SMD are implemented herein, using algorithms such as Random Forests (RF) and Genetic Algorithms coupled with Least Trimmed Squares (GALTS) regression. The results show that for SMD estimation, the RF algorithm performed best as compared to the GALTS, with Root Mean Square Errors (RMSEs) of 0.021 and 0.024, respectively. All in all, our study findings can provide important assistance towards developing the accuracy and applicability of remote sensing-based products for operational use. Numéro de notice : A2021-595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10080507 Date de publication en ligne : 27/07/2021 En ligne : https://doi.org/10.3390/ijgi10080507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98220
in ISPRS International journal of geo-information > vol 10 n° 8 (August 2021) . - n° 507[article]Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data / Vijay Pratap Yadav in Geocarto international, vol 36 n° 7 ([15/04/2021])
![]()
[article]
Titre : Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data Type de document : Article/Communication Auteurs : Vijay Pratap Yadav, Auteur ; Rajendra Prasad, Auteur ; Ruchi Bala, Auteur Année de publication : 2021 Article en page(s) : pp 791 - 802 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] blé (céréale)
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] Leaf Area Index
[Termes IGN] polarisation
[Termes IGN] rendement agricole
[Termes IGN] série temporelleRésumé : (Auteur) The time-series synthetic aperture radar (SAR) and optical satellite data were used for the leaf area index (LAI) estimation of wheat crop using modified water cloud model (MWCM) in Varanasi district, India. In this study, MWCM was developed by including scale invariant vegetation fraction (fveg) in the old WCM for the estimation of LAI. The non-linear least square optimization technique was applied to determine the optimum model parameters for the retrieval of LAI which was further validated with the observed LAI. The estimated values of LAI by MWCM at VV polarization shows good correspondence (R2 = 0.901 and RMSE = 0.456 m2/m2) with the observed LAI values than at VH polarization (R2 = 0.742 and RMSE = 0.521 m2/m2).The MWCM shows great potential for the LAI estimation of wheat crop by incorporating optical data (i.e. Sentinel-2) in terms of fveg with SAR data (i.e. Sentinel-1A). Numéro de notice : A2021-294 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624984 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624984 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97352
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 791 - 802[article]Bistatic specular scattering measurements for the estimation of rice crop growth variables using fuzzy inference system at X-, C-, and L-bands / Ajeet Kumar Vishwakarma in Geocarto international, vol 35 n° 13 ([01/10/2020])
![]()
[article]
Titre : Bistatic specular scattering measurements for the estimation of rice crop growth variables using fuzzy inference system at X-, C-, and L-bands Type de document : Article/Communication Auteurs : Ajeet Kumar Vishwakarma, Auteur ; Rajendra Prasad, Auteur Année de publication : 2020 Article en page(s) : pp 1433 - 1449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande C
[Termes IGN] bande L
[Termes IGN] bande X
[Termes IGN] biomasse
[Termes IGN] indice foliaire
[Termes IGN] Inférence floue
[Termes IGN] Leaf Area Index
[Termes IGN] Oryza (genre)
[Termes IGN] polarisation
[Termes IGN] radar bistatique
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Bistatic scatterometer measurements were performed on the rice crop-bed in the angular range of 20° to 60° for specular direction (ϕ=0) at X-, C- and L-bands for HH-, VV-, and HV-polarizations. The dominant scattering contribution to bistatic specular scattering coefficients (σ0) was analysed with the crop growth stages at various angle of incidence. The regression analysis showed high correlation between σ0 and crop growth variables at 40° angle of incidence for HH-polarization at X-band and for VV-polarization at C- and L-bands. The estimation of rice crop growth variables using subtractive clustering based fuzzy inference system (S-FIS) was done at 40° angle of incidence. The lower values of computed root mean square error (RMSE) between the observed and estimated values showed high potential of developed S-FIS model for the estimation of leaf area index for HH-polarisation at X-band, vegetation water content and fresh biomass for VV-polarization at C- and L-bands, respectively. Numéro de notice : A2020-608 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1576777 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1576777 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95969
in Geocarto international > vol 35 n° 13 [01/10/2020] . - pp 1433 - 1449[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020101 RAB Revue Centre de documentation En réserve L003 Disponible