Détail de l'auteur
Auteur Daoqin Tong |
Documents disponibles écrits par cet auteur



Mapping uncertain geographical attributes: incorporating robustness into choropleth classification design / Wangshu Mu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
![]()
[article]
Titre : Mapping uncertain geographical attributes: incorporating robustness into choropleth classification design Type de document : Article/Communication Auteurs : Wangshu Mu, Auteur ; Daoqin Tong, Auteur Année de publication : 2020 Article en page(s) : pp 2204 - 2224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes descripteurs IGN] attribut géomètrique
[Termes descripteurs IGN] carte choroplèthe
[Termes descripteurs IGN] conception cartographique
[Termes descripteurs IGN] erreur d'échantillon
[Termes descripteurs IGN] incertitude d'atttribut
[Termes descripteurs IGN] incertitude des données
[Termes descripteurs IGN] inférence statistique
[Termes descripteurs IGN] méthode robuste
[Termes descripteurs IGN] optimisation (mathématiques)Résumé : (auteur) Choropleth mapping provides a simple but effective visual presentation of geographical data. Traditional choropleth mapping methods assume that data to be displayed are certain. This may not be true for many real-world problems. For example, attributes generated based on surveys may contain sampling and non-sampling error, and results generated using statistical inferences often come with a certain level of uncertainty. In recent years, several studies have incorporated uncertain geographical attributes into choropleth mapping with a primary focus on identifying the most homogeneous classes. However, no studies have yet accounted for the possibility that an areal unit might be placed in a wrong class due to data uncertainty. This paper addresses this issue by proposing a robustness measure and incorporating it into the optimal design of choropleth maps. In particular, this study proposes a discretization method to solve the new optimization problem along with a novel theoretical bound to evaluate solution quality. The new approach is applied to map the American Community Survey data. Test results suggest a tradeoff between within-class homogeneity and robustness. The study provides an important perspective on addressing data uncertainty in choropleth map design and offers a new approach for spatial analysts and decision-makers to incorporate robustness into the mapmaking process. Numéro de notice : A2020-614 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1726921 date de publication en ligne : 16/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1726921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95987
in International journal of geographical information science IJGIS > vol 34 n° 11 (November 2020) . - pp 2204 - 2224[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020111 SL Revue Centre de documentation Revues en salle Disponible