Détail de l'auteur
Auteur Alex Fafard |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Weighted spherical sampling of point clouds for forested scenes / Alex Fafard in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
[article]
Titre : Weighted spherical sampling of point clouds for forested scenes Type de document : Article/Communication Auteurs : Alex Fafard, Auteur ; Ali Rouzbeh Kargar, Auteur ; Jan Van Aardt, Auteur Année de publication : 2020 Article en page(s) : pp 619 - 625 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] coordonnées sphériques
[Termes IGN] densité de la végétation
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] échantillonnage
[Termes IGN] mangrove
[Termes IGN] Micronésie
[Termes IGN] scène forestière
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (Auteur) Terrestrial laser scanning systems are characterized by a sampling pattern which varies in point density across the hemisphere. Additionally, close objects are over-sampled relative to objects that are farther away. These two effects compound to potentially bias the three-dimensional statistics of measured scenes. Previous methods of sampling have resulted in a loss of structural coherence. In this article, a method of sampling is proposed to optimally sample points while preserving the structure of a scene. Points are sampled along a spherical coordinate system, with probabilities modulated by elevation angle and squared distance from the origin. The proposed approach is validated through visual comparison and stem-volume assessment in a challenging mangrove forest in Micronesia. Compared to several well-known sampling techniques, the proposed approach reduces sampling bias and shows strong performance in stem-reconstruction measurement. The proposed sampling method matched or exceeded the stem-volume measurement accuracy across a variety of tested decimation levels. On average it achieved 3.0% higher accuracy at estimating stem volume than the closest competitor. This approach shows promise for improving the evaluation of terrestrial laser-scanning data in complex scenes. Numéro de notice : A2020-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.10.619 Date de publication en ligne : 01/10/2020 En ligne : https://doi.org/10.14358/PERS.86.10.619 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96093
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 10 (October 2020) . - pp 619 - 625[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020101 SL Revue Centre de documentation Revues en salle Disponible