Détail de l'auteur
Auteur Holger Sauter |
Documents disponibles écrits par cet auteur



Using OpenStreetMap data and machine learning to generate socio-economic indicators / Daniel Feldmeyer in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
![]()
[article]
Titre : Using OpenStreetMap data and machine learning to generate socio-economic indicators Type de document : Article/Communication Auteurs : Daniel Feldmeyer, Auteur ; Claude Meisch, Auteur ; Holger Sauter, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] Allemagne
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] arbre aléatoire
[Termes descripteurs IGN] base de données spatiotemporelles
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] chômage
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] collectivité territoriale
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] inégalité
[Termes descripteurs IGN] limite administrative
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] OpenStreetMapRésumé : (auteur) Socio-economic indicators are key to understanding societal challenges. They disassemble complex phenomena to gain insights and deepen understanding. Specific subsets of indicators have been developed to describe sustainability, human development, vulnerability, risk, resilience and climate change adaptation. Nonetheless, insufficient quality and availability of data often limit their explanatory power. Spatial and temporal resolution are often not at a scale appropriate for monitoring. Socio-economic indicators are mostly provided by governmental institutions and are therefore limited to administrative boundaries. Furthermore, different methodological computation approaches for the same indicator impair comparability between countries and regions. OpenStreetMap (OSM) provides an unparalleled standardized global database with a high spatiotemporal resolution. Surprisingly, the potential of OSM seems largely unexplored in this context. In this study, we used machine learning to predict four exemplary socio-economic indicators for municipalities based on OSM. By comparing the predictive power of neural networks to statistical regression models, we evaluated the unhinged resources of OSM for indicator development. OSM provides prospects for monitoring across administrative boundaries, interdisciplinary topics, and semi-quantitative factors like social cohesion. Further research is still required to, for example, determine the impact of regional and international differences in user contributions on the outputs. Nonetheless, this database can provide meaningful insight into otherwise unknown spatial differences in social, environmental or economic inequalities. Numéro de notice : A2020-663 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9090498 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.3390/ijgi9090498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96139
in ISPRS International journal of geo-information > vol 9 n° 9 (September 2020) . - 16 p.[article]