Détail de l'auteur
Auteur Jinwen Xu |
Documents disponibles écrits par cet auteur (1)



Empirical assessment of road network resilience in natural hazards using crowdsourced traffic data / Yi Qiang in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Empirical assessment of road network resilience in natural hazards using crowdsourced traffic data Type de document : Article/Communication Auteurs : Yi Qiang, Auteur ; Jinwen Xu, Auteur Année de publication : 2020 Article en page(s) : pp 2434 - 2450 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de groupement
[Termes IGN] données localisées des bénévoles
[Termes IGN] étude empirique
[Termes IGN] Google Maps
[Termes IGN] Ohio (Etats-Unis)
[Termes IGN] participation du public
[Termes IGN] réseau routier
[Termes IGN] résilience écologique
[Termes IGN] risque naturel
[Termes IGN] trafic routierRésumé : (auteur) Climate change and natural hazards pose great threats to road transport systems which are ‘lifelines’ of human society. However, there is generally a lack of empirical data and approaches for assessing resilience of road networks in real hazard events. This study introduces an empirical approach to evaluate road network resilience using crowdsourced traffic data in Google Maps. Based on the conceptualization of resilience and the Hansen accessibility index, resilience of road network is measured from accumulated accessibility reduction over time during a hazard. The utility of this approach is demonstrated in a case study of the Cleveland metropolitan area (Ohio) in Winter Storm Harper. The results reveal strong spatial variations of the disturbance and recovery rate of road network performance during the hazard. The major findings of the case study are: (1) longer distance travels have higher increasing ratios of travel time during the hazard; (2) communities with low accessibility at the normal condition have lower road network resilience; (3) spatial clusters of low resilience are identified, including communities with low socio-economic capacities. The introduced approach provides ground-truth validation for existing quantitative models and supports disaster management and transportation planning to reduce hazard impacts on road network. Numéro de notice : A2020-691 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1694681 Date de publication en ligne : 25/11/2020 En ligne : https://doi.org/10.1080/13658816.2019.1694681 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96229
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2434 - 2450[article]