Détail de l'auteur
Auteur Roholah Yazdan |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Using geometric constraints to improve performance of image classifiers for automatic segmentation of traffic signs / Roholah Yazdan in Geomatica, vol 75 n° 1 (Mars 2021)
[article]
Titre : Using geometric constraints to improve performance of image classifiers for automatic segmentation of traffic signs Type de document : Article/Communication Auteurs : Roholah Yazdan, Auteur ; Masood Varshosaz, Auteur ; Saied Pirasteh, Auteur ; Fabio Remondino, Auteur Année de publication : 2021 Article en page(s) : pp 28 - 50 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] contrainte géométrique
[Termes IGN] espace colorimétrique
[Termes IGN] programmation par contraintes
[Termes IGN] signalisation routièreRésumé : (auteur) Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided. Numéro de notice : A2021-608 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1139/geomat-2020-0010 En ligne : https://doi.org/10.1139/geomat-2020-0010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98322
in Geomatica > vol 75 n° 1 (Mars 2021) . - pp 28 - 50[article]Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / Roholah Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation Type de document : Article/Communication Auteurs : Roholah Yazdan, Auteur ; Masood Varshosaz, Auteur Année de publication : 2021 Article en page(s) : pp 18 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'images
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] corrélation croisée normalisée
[Termes IGN] couple stéréoscopique
[Termes IGN] détection automatique
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconnaissance d'objets
[Termes IGN] segmentation d'image
[Termes IGN] SIFT (algorithme)
[Termes IGN] signalisation routière
[Termes IGN] SURF (algorithme)
[Termes IGN] Téhéran
[Termes IGN] transformation de Hough
[Termes IGN] zone urbaineRésumé : (auteur) Automatic detection and recognition of traffic signs have many applications. However, some problems can affect the accuracy of the existing algorithms, such as changes in environmental light conditions, shadows, the presence of objects of the same colour, significant changes in scale and rotation, as well as obstacles in front of the traffic signs. To overcome these difficulties, a reference image database is usually used that includes different modes of appearing the traffic signs in the images. In order to overcome the effects of scale and rotation, in this paper a new method is presented in which only one reference image is needed for each sign to recognise the traffic sign in an image. In the proposed method, imaging is done in stereo. Using the captured image pair, a virtual image is generated which is then used to recognise the sign. As a result, the recognition is carried out with a minimum number of reference images. Experiments show that the proposed algorithm significantly improves recognition results. The traffic signs are recognised with 93.1% accuracy that enjoys a 4.9% improvement over traditional methods. Numéro de notice : A2021-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.003 Date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96304
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 18 - 35[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt