Détail de l'auteur
Auteur Zhewei Liu |
Documents disponibles écrits par cet auteur



RegNet: a neural network model for predicting regional desirability with VGI data / Wenzhong Shi in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : RegNet: a neural network model for predicting regional desirability with VGI data Type de document : Article/Communication Auteurs : Wenzhong Shi, Auteur ; Zhewei Liu, Auteur ; Zhenlin An, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 175 - 192 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] niveau local
[Termes descripteurs IGN] participation du public
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] réseau social géodépendantRésumé : (auteur) Volunteered geographic information can be used to predict regional desirability. A common challenge regarding previous works is that intuitive empirical models, which are inaccurate and bring in perceptual bias, are traditionally used to predict regional desirability. This results from the fact that the hidden interactions between user online check-ins and regional desirability have not been revealed and clearly modelled yet. To solve the problem, a novel neural network model ‘RegNet’ is proposed. The user check-in history is input into a neural network encoder structure firstly for redundancy reduction and feature learning. The encoded representation is then fed into a hidden-layer structure and the regional desirability is predicted. The proposed RegNet is data-driven and can adaptively model the unknown mappings from input to output, without presumed bias and prior knowledge. We conduct experiments with real-world datasets and demonstrate RegNet outperforms state-of-the-art methods in terms of ranking quality and prediction accuracy of rating. Additionally, we also examine how the structure of encoder affects RegNet performance and suggest on choosing proper sizes of encoded representation. This work demonstrates the effectiveness of data-driven methods in modelling the hidden unknown relationships and achieving a better performance over traditional empirical methods. Numéro de notice : A2021-023 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768261 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768261 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96526
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 175 - 192[article]