Détail de l'auteur
Auteur Mingjun Wang |
Documents disponibles écrits par cet auteur (2)



Extracting 3D indoor maps with any shape accurately using building information modeling data / Qi Qiu in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
![]()
[article]
Titre : Extracting 3D indoor maps with any shape accurately using building information modeling data Type de document : Article/Communication Auteurs : Qi Qiu, Auteur ; Mingjun Wang, Auteur ; Qingsheng Xie, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 700 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carroyage
[Termes IGN] carte d'intérieur
[Termes IGN] carte en 3D
[Termes IGN] conception assistée par ordinateur
[Termes IGN] détection de contours
[Termes IGN] grille
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] service fondé sur la positionRésumé : (auteur) Indoor maps lay the foundation for most indoor location-based services (LBS). Building Information Modeling (BIM) data contains multiple dimensional computer-aided design information. Some studies have utilized BIM data to automatically extract 3D indoor maps. A complete 3D indoor map consists of both floor-level maps and cross-floor paths. Currently, the floor-level indoor maps are mainly either grid-based maps or topological maps, and the cross-floor path generation schemes are not adaptive to building elements with irregular 3D shapes. To address these issues, this study proposes a novel scheme to extract an accurate 3D indoor map with any shape using BIM data. Firstly, this study extracts grid-based maps from BIM data and generates the topological maps directly through the grid-based maps using image thinning. A novel hybrid indoor map, termed Grid-Topological map, is then formed by the grid-based maps and topological maps jointly. Secondly, this study obtains the cross-floor paths from cross-floor building elements by a four-step process, namely X-Z projection, boundary extraction, X-Z topological path generation, and path-BIM intersection. Finally, experiments on eight typical types of cross-floor building elements and three multi-floor real-world buildings were conducted to prove the effectiveness of the proposed scheme, the average accuracy rates of the evaluated paths are higher than 88%. This study will advance the 3D indoor maps generation and inspire the application of indoor maps in indoor LBS, indoor robots, and 3D geographic information systems. Numéro de notice : A2021-778 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10100700 Date de publication en ligne : 14/10/2021 En ligne : https://doi.org/10.3390/ijgi10100700 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98842
in ISPRS International journal of geo-information > vol 10 n° 10 (October 2021) . - n° 700[article]A points of interest matching method using a multivariate weighting function with gradient descent optimization / Zhou Yang in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : A points of interest matching method using a multivariate weighting function with gradient descent optimization Type de document : Article/Communication Auteurs : Zhou Yang, Auteur ; Mingjun Wang, Auteur ; Chen Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 359 - 381 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] algorithme du gradient
[Termes IGN] appariement automatique
[Termes IGN] appariement de données localisées
[Termes IGN] apprentissage automatique
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multisources
[Termes IGN] exploration de données
[Termes IGN] intégration de données
[Termes IGN] point d'intérêt
[Termes IGN] pondération
[Termes IGN] qualité des donnéesRésumé : (Auteur) Volunteered geographic information contains abundant valuable data, which can be applied to various spatiotemporal geographical analyses. While the useful information may be distributed in different, low‐quality data sources, this issue can be solved by data integration. Generally, the primary task of integration is data matching. Unfortunately, due to the complexity and irregularities of multi‐source data, existing studies have found it difficult to efficiently establish the correspondence between different sources. Therefore, we present a multi‐stage method to match multi‐source data using points of interest. A spatial filter is constructed to obtain candidate sets for geographical entities. The weights of non‐spatial characteristics are examined by a machine learning‐related algorithm with artificially labeled random samples. A case study on Fuzhou reveals that an average of 95% of instances are accurately matched. Thus, our study provides a novel solution for researchers who are engaged in data mining and related work to accurately match multi‐source data via knowledge obtained by the idea and methods of machine learning. Numéro de notice : A2021-189 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12690 Date de publication en ligne : 05/10/2020 En ligne : https://doi.org/10.1111/tgis.12690 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97158
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 359 - 381[article]