Détail de l'auteur
Auteur Hao Chen |
Documents disponibles écrits par cet auteur (3)



3D modeling method for dome structure using digital geological map and DEM / Xian-Yu Liu in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
![]()
[article]
Titre : 3D modeling method for dome structure using digital geological map and DEM Type de document : Article/Communication Auteurs : Xian-Yu Liu, Auteur ; An-Bo Li, Auteur ; Hao Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 339 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte géologique
[Termes IGN] carte stratigraphique
[Termes IGN] courbe de Bézier
[Termes IGN] modèle géologique
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] structure géologiqueRésumé : (auteur) Geological maps have wide coverage with low acquisition difficulty. When other geological survey data are scarce, they are a valuable source of geological structure information for geological modeling. However, for structures with large deformation, geological map information has difficulty meeting the requirement of its 3D geological modeling. Therefore, this paper takes the dome structure as an example to explore a 3D modeling method based on geological maps, DEM and related geological knowledge. The method includes: (1) adaptively calculating the attitude of points on the stratigraphic boundaries; (2) inferring and generating the bottom boundary of the model from the attitude data of the boundary points; (3) generating the model interface constrained by Bézier curves based on the bottom boundary; (4) generating the top and bottom surfaces of the stratum; and (5) stitching each surface of the geological body to generate the final dome model. Case studies of the dome in Wulongshan in China and the Richat structure in Mauritania show that this method can build a solid model of the dome based only on geological maps and DEM data, whose morphological features are basically consistent with those embodied in the section view or the model generated by traditional methods. Numéro de notice : A2022-482 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11060339 Date de publication en ligne : 07/06/2022 En ligne : https://doi.org/10.3390/ijgi11060339 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100895
in ISPRS International journal of geo-information > vol 11 n° 6 (June 2022) . - n° 339[article]CNN-based RGB-D salient object detection: Learn, select, and fuse / Hao Chen in International journal of computer vision, vol 129 n° 7 (July 2021)
![]()
[article]
Titre : CNN-based RGB-D salient object detection: Learn, select, and fuse Type de document : Article/Communication Auteurs : Hao Chen, Auteur ; Yongjian Deng, Auteur ; Guosheng Lin, Auteur Année de publication : 2021 Article en page(s) : pp 2076 - 2096 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] approche hiérarchique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] image RVB
[Termes IGN] profondeur
[Termes IGN] saillance
[Termes IGN] segmentation sémantiqueRésumé : (auteur) The goal of this work is to present a systematic solution for RGB-D salient object detection, which addresses the following three aspects with a unified framework: modal-specific representation learning, complementary cue selection, and cross-modal complement fusion. To learn discriminative modal-specific features, we propose a hierarchical cross-modal distillation scheme, in which we use the progressive predictions from the well-learned source modality to supervise learning feature hierarchies and inference in the new modality. To better select complementary cues, we formulate a residual function to incorporate complements from the paired modality adaptively. Furthermore, a top-down fusion structure is constructed for sufficient cross-modal cross-level interactions. The experimental results demonstrate the effectiveness of the proposed cross-modal distillation scheme in learning from a new modality, the advantages of the proposed multi-modal fusion pattern in selecting and fusing cross-modal complements, and the generalization of the proposed designs in different tasks. Numéro de notice : A2021-697 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-021-01452-0 Date de publication en ligne : 05/05/2021 En ligne : https://doi.org/10.1007/s11263-021-01452-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98532
in International journal of computer vision > vol 129 n° 7 (July 2021) . - pp 2076 - 2096[article]Cloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
![]()
[article]
Titre : Cloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques Type de document : Article/Communication Auteurs : Miao Tian, Auteur ; Hao Chen, Auteur ; Guanghui Liu, Auteur Année de publication : 2021 Article en page(s) : pp 2781 - 2793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection des nuages
[Termes IGN] dioxyde de carbone
[Termes IGN] image infrarouge
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] régression linéaire
[Termes IGN] vapeur d'eauRésumé : (auteur) Accurate cloud detection using infrared (IR) data is very challenging due to the limitations and uncertainties from many aspects in the satellite IR remote sensing. This article proposes an end-to-end cloud detection method for the Cross-track IR Sounder (CrIS) using machine learning (ML) techniques. The brightness temperatures from paired CrIS channels in the longwave and midwave water vapor bands and the longwave and shortwave CO 2 bands are used. After obtaining the linear regression coefficients for each of the selected channel pairs, a complete set of CrIS full spectral resolution (FSR) cloud detection index (FCDI) is derived from the temperature difference between the regression and observation for each channel pair. It is shown that FCDI captures cloud location and structure well by comparing with the cloud products (CPs) from the Visible IR Imaging Radiometer Suite (VIIRS). After collocating FCDI with VIIRS CP, ML techniques such as the extreme learning machine, support vector machine, and multilayer perceptron are used to train the collocated FCDIs for cloud detection. Simulation results show that the accuracy of FCDI cloud detection is slightly above 80%. Moreover, the results encourage the use of water vapor bands in FCDI, in addition to CO 2 bands. Numéro de notice : A2021-281 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3020120 Date de publication en ligne : 18/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3020120 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97387
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2781 - 2793[article]