Détail de l'auteur
Auteur Alejandro C. Frery |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines / Rogério Galante Negri in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Spectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines Type de document : Article/Communication Auteurs : Rogério Galante Negri, Auteur ; Alejandro C. Frery, Auteur ; Wallace Casaca, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2863 - 2876 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse de sensibilité
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'ombre
[Termes IGN] détection de changement
[Termes IGN] détection des nuages
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-MSI
[Termes IGN] processus stochastique
[Termes IGN] zone homogèneRésumé : (auteur) Change detection is a topic of great interest in remote sensing. A good similarity metric to compute the variations among the images is the key to high-quality change detection. However, most existing approaches rely on the fixed threshold values or the user-provided ground truth in order to be effective. The inability to deal with artificial objects such as clouds and shadows is a significant difficulty for many change-detection methods. We propose a new unsupervised change-detection framework to address those critical points. The notion of homogeneous regions is introduced together with a set of geometric operations and statistic-based criteria to characterize and distinguish formally the change and nonchange areas in a pair of remote sensing images. Moreover, a robust and statistically well-posed family of stochastic distances is also proposed, which allows comparing the probability distributions of different regions/objects in the images. These stochastic measures are then used to train a support-vector-machine-based approach in order to detect the change/nonchange areas. Three study cases using the images acquired with different sensors are given in order to compare the proposed method with other well-known unsupervised methods. Numéro de notice : A2021-282 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3009483 Date de publication en ligne : 24/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3009483 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97389
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2863 - 2876[article]